Skip to main content
Log in

Strings of special primes in arithmetic progressions

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

The Green–Tao Theorem, one of the most celebrated theorems in modern number theory, states that there exist arbitrarily long arithmetic progressions of prime numbers. In a related but different direction, a recent theorem of Shiu proves that there exist arbitrarily long strings of consecutive primes that lie in any arithmetic progression that contains infinitely many primes. Using the techniques of Shiu and Maier, this paper generalizes Shiu’s Theorem to certain subsets of the primes such as primes of the form \({\lfloor{\pi n}\rfloor}\) and some of arithmetic density zero such as primes of the form \({\lfloor{n\log\log n}\rfloor}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banks W.D., Shparlinski I.E.: Prime numbers with Beatty sequences. Colloquium Mathematicum 115, 147–157 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. De Bruijn N.G.: On the number of positive integers \({\leq x}\) and free of prime factors \({\geq y}\) . Indag. Math. 13, 50–60 (1951)

    Google Scholar 

  3. A. Granville, Unexpected Irregularities in the Distribution of Prime Numbers, Proceedings of the ICM, 1994.

  4. Green B., Tao T.: The Primes Contain Arbitrarily Long Arithmetic Progressions. Ann. Math, 167, 481–547 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gowers W.T.: A New Proof of Szemerédi’s Theorem, GAFA. Geom. funct. anal. 11, 465–588 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. G. H. Hardy, and E. M. Wright, An Introduction to the Theory of Numbers, D. R. Heath-Brown and J. H. Silverman, eds., 6th ed., Oxford University Press, Oxford, 2008.

  7. Khinchin A.Y.: Zur metrischen Theorie der diophantischen Approximationen. Math. Z. 24, 706–714 (1926)

    Article  MathSciNet  Google Scholar 

  8. Kra B.: The Green–Tao Theorem on Arithmetic Progressions in the Primes: An Ergodic Point of View. Bull. Amer. Math. Soc. 43, 3–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Leitmann D.: The Distribution of Prime Numbers in Sequences of the Form \({\lfloor f(n)\rfloor}\) , Proc. London Math. Soc. 35, 448–462 (1977)

    Article  MathSciNet  Google Scholar 

  10. Maier H.: Chains of large gaps between consecutive primes. Adv. Math. 39, 257–269 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Roth K.F.: Rational approximations to algebraic numbers. Mathematika 2, 1–20 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  12. Roth K.F.: Corrigendum to “Rational approximations to algebraic numbers”. Mathematika 2, 168 (1955)

    Article  Google Scholar 

  13. Shiu D.K.L.: Strings of Congruent Primes. J. London Math. Soc. 61, 359–373 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Thorne, Extensions of Results on the Distribution of Primes, ProQuest, UMI Dissertation Publishing (2011).

  15. van der Corput J.G.: Über Summen von Primzahlen und Primzahlquadraten. Math. Ann. 116, 1–50 (1939)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keenan Monks.

Additional information

The authors are grateful to the NSF’s support of the REU at Emory University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monks, K., Peluse, S. & Ye, L. Strings of special primes in arithmetic progressions. Arch. Math. 101, 219–234 (2013). https://doi.org/10.1007/s00013-013-0544-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-013-0544-x

Keywords

Navigation