Skip to main content
Log in

Tensor products and relation quantales

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

A classical tensor product \({A \otimes B}\) of complete lattices A and B, consisting of all down-sets in \({A \times B}\) that are join-closed in either coordinate, is isomorphic to the complete lattice Gal(A,B) of Galois maps from A to B, turning arbitrary joins into meets. We introduce more general kinds of tensor products for closure spaces and for posets. They have the expected universal property for bimorphisms (separately continuous maps or maps preserving restricted joins in the two components) into complete lattices. The appropriate ingredient for quantale constructions is here distributivity at the bottom, a generalization of pseudocomplementedness. We show that the truncated tensor product of a complete lattice B with itself becomes a quantale with the closure of the relation product as multiplication iff B is pseudocomplemented, and that the tensor product has a unit element iff B is atomistic. The pseudocomplemented complete lattices form a semicategory in which the hom-set between two objects is their tensor product. The largest subcategory of that semicategory has as objects the atomic boolean complete lattices, which is equivalent to the category of sets and relations. More general results are obtained for closure spaces and posets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. John Wiley & Sons, Inc., New York (1990). Revised Edition 2004: Dover Publ. Inc., Mineoly, New York. Online edition: http://katmat.math.uni-bremen.de/acc

  2. Banaschewski B., Nelson E.: Tensor products and bimorphisms. Canad. Math. Bull. 19, 385–401 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bandelt H.-J.: The tensor product of continuous lattices. Math. Z. 172, 89–96 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bandelt H.-J.: Coproducts of bounded \({(\alpha,\beta)}\)-distributive lattices. Algebra Universalis 17, 92–100 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Birkhoff, G.: Lattice Theory. AMS Coll. Publ. 25 Providence, \({3^{\rm d}}\) Ed. (1967 / 1979)

  6. Blyth T., Janowitz M.: Residuation Theory. Pergamon Press, Oxford (1972)

    MATH  Google Scholar 

  7. Erné, M.: Scott convergence and Scott topology on partially ordered sets II. In: Banaschewski, B., Hoffmann, R.-E. (eds.) Continuous Lattices, Bremen 1979, Lecture Notes in Math. 871, pp. 61–96. Springer, Berlin (1981)

  8. Erné, M.: Lattice representation of closure spaces. In: Bentley, L. et al. (eds.) Categorical Topology, Proc. Conference Toledo, Ohio 1983, pp. 197–222. Heldermann, Berlin (1984)

  9. Erné M.: Tensor products of posets revisited. Order 7, 295–314 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erné M.: Tensor products of contexts and complete lattices. Algebra Universalis 31, 36–65 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erné M.: Prime ideal theory for general algebras. Appl. Categ. Structures 8, 115–144 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erné, M., Adjunctions and Galois Connections: Origins, History and Development. In: Denecke, D., Erné, M., Wismath, S.L. (eds.), Galois Connections and Applications, pp. 1–138. Kluwer Academic Publishers, Dordrecht (2004)

  13. Erné, M.: Tensor products for closure spaces and Galois connections. https://tu-dresden.de/mn/math/algebra/ressourcen/dateien/aaaseries/prev/abstracts/abstracts71.pdf?lang=de

  14. Erné, M.: Closure. In: Mynard, F., Pearl, E. (eds.) Beyond Topology. Contemp. Mathematics 486, pp. 163–238. Amer. Math. Soc., Providence (2009)

  15. Erné M., Joshi V.: Ideals in atomic posets. Discr. Math. 338, 954–971 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Erné M., Koslowski J., Melton A., Strecker G.E.: A primer on Galois connections. In: Papers on general topology and applications, 1991. Ann. New York Acad. Sci. 704, 103–125 (1993)

    Article  MATH  Google Scholar 

  17. Everett C.J.: Closure operators and Galois theory in lattices. Trans. Amer. Math. Soc. 55, 514–525 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ferreira M.J., Picado J.: The Galois approach to uniform structures. Quaestiones Math. 28, 355–373 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Freyd P.J., Scedrov A.: Categories, Allegories. North-Holland, Amsterdam (1990)

    MATH  Google Scholar 

  20. Frink O.: Ideals in partially ordered sets. Amer. Math. Monthly 61, 223–234 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  21. Frink O.: Pseudo-complements in semi-lattices. Duke Math. J. 29, 505–514 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  22. Garraway W.D.: Sheaves for an involutive quantaloid. Cah. Topol. Géom. Différ. Catég. 46, 243–274 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Encyclopedia of Math. and its Appl. 93, Cambridge Univ. Press (2003)

  24. Grätzer G., Wehrung F.: Tensor products of lattices with zero. J. Pure Appl. Algebra 147, 273–301 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Moens M.-A., Berni-Canani U., Borceux F.: On regular presheaves and regular semi-categories. Cah. Topol. Géom. Différ. Catég. 43, 163–190 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Nelson E.: Galois connections as left adjoint maps. Comm. Math. Univ. Carolinae 17, 523–541 (1976)

    MathSciNet  MATH  Google Scholar 

  27. Niefield S., Rosenthal K.I: Constructing locales from quantales. Math. Proc. Camb. Phil. Soc. 104, 215–234 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ore O.: Galois connexions. Trans. Amer. Math. Soc. 55, 493–513 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  29. Picado J.: The quantale of Galois connections. Algebra Universalis 52, 527–540 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Picado J., Pultr A.: Frames and Locales: topology without points. Springer, Basel (2012)

    Book  MATH  Google Scholar 

  31. Rosenthal, K.I.: Quantales and Their Applications. Longman Scientific & Technical, Harlow, Essex (1990)

  32. Shmuely Z.: The structure of Galois connections. Pacific J. Math. 54, 209–225 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stubbe I.: Categorical structures enriched in a quantaloid: regular presheaves, regular semicategories. Cah. Topol. Géom. Différ. Catég. 46, 99–121 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Wille R.: Tensorial decomposition of concept lattices. Order 2, 81–95 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Erné.

Additional information

Presented by M. Ploscica.

The second author acknowledges support from CMUC (UID/MAT/00324/2013 funded by the Portuguese Government through FCT/MCTES and co-funded by the European RDF through Partnership Agreement PT2020) and grants MTM2015-63608-P (Ministry of Economy and Competitiveness of Spain) and IT974-16 (Basque Government).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erné, M., Picado, J. Tensor products and relation quantales. Algebra Univers. 78, 461–487 (2017). https://doi.org/10.1007/s00012-017-0472-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-017-0472-x

2010 Mathematics Subject Classification

Key words and phrases

Navigation