Skip to main content
Log in

Recognition of Mycobacterium tuberculosis by macrophage Toll-like receptor and its role in autophagy

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

The pathogen responsible for tuberculosis is called Mycobacterium tuberculosis. Its interaction with macrophages has a significant impact on the onset and progression of the disease.

Methods

The respiratory pathway allows Mycobacterium tuberculosis to enter the body's lungs where it battles immune cells before being infected latently or actively. In the progress of tuberculosis, Mycobacterium tuberculosis activates the body's immune system and creates inflammatory factors, which cause tissue inflammation to infiltrate and the creation of granulomas, which seriously harms the body. Toll-like receptors of macrophage can mediate host recognition of Mycobacterium tuberculosis, initiate immune responses, and participate in macrophage autophagy. New host-directed therapeutic approaches targeting autophagy for drug-resistant Mycobacterium tuberculosis have emerged, providing new ideas for the effective treatment of tuberculosis.

Conclusions

In-depth understanding of the mechanisms by which macrophage autophagy interacts with intracellular Mycobacterium tuberculosis, as well as the study of potent and specific autophagy-regulating molecules, will lead to much-needed advances in drug discovery and vaccine design, which will improve the prevention and treatment of human tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Note: Toll-like receptors, which identify molecules with conserved structures derived from MTB, are a significant class of protein molecules involved in non-specific immunity. TLR1, TLR2, TLR4, and LTR6 are surface receptors on macrophages. TLR2 can work in concert with TLR1 and TLR6 to recognize molecules of various MTB PMAPs combinatorially. Also, TLR4 is capable of identifying multiple MTB ligands. TLR3, TLR7, TLR8, and TLR9 located in the endosomal/lysosomal compartment and are involved in the recognition of nucleic acid components of MTB

Fig. 2

Note: TLR2 forms a heterodimer with TLR1/TLR6 upon identification of the macrophage surface Toll-like receptor by MTB ligands, hence initiating the MyD88-dependent pathway. TLR7/8 and TLR9 also cause the MyD88-dependent pathway to become active. When TLR4 recognizes the appropriate ligands, it activates both the MyD88-dependent and MyD88-independent pathways (TRIF pathway). Only the MyD88 independent pathway is triggered by TLR3. The TIR structural domain of TLRs changes shape when the extracellular region identifies the matching PAMPs, and the C-terminus keeps attracting MyD88 or other junctional proteins. After IRAK is recruited by MyD88 through KD, downstream signaling via TRAF6, TAK1, TAB1, and 2 is started, activating NF-κB or AP-1 and causing the production of inflammatory cytokines. MyD88 non-dependent pathway activation via TRIF and TRAF3 leads to IKKε/TBK1 recruitment, IRF3 phosphorylation and IFN-β expression

Similar content being viewed by others

Data availability

The data that support the findings of this review are openly available in public resources.

References

  1. Global tuberculosis report 2023. Geneva: World Health Organization; 2023. Licence: CC BY-NC-SA 3.0 IGO.

  2. Ufimtseva EG, Eremeeva NI, Umpeleva TV, Vakhrusheva DV, Skornyakov SN. Mycobacterium tuberculosis load in host cells and the antibacterial activity of alveolar macrophages are linked and differentially regulated in various lung lesions of patients with pulmonary tuberculosis. IJMS. 2021;22(7):3452. https://doi.org/10.3390/ijms22073452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mubarak RA. Comparison of pro- and anti-inflammatory responses in paired human primary airway epithelial cells and alveolar macrophages. Respir Res. 2018;19:126.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V. Toll-like receptors control autophagy. EMBO J. 2008;27(7):1110–21. https://doi.org/10.1038/emboj.2008.31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu Y, Fattah EA, Liu XD, Jagannath C, Eissa NT. Harnessing of TLR-mediated autophagy to combat mycobacteria in macrophages. Tuberculosis (Edinb). 2013;93(Suppl):S33-37. https://doi.org/10.1016/S1472-9792(13)70008-8.

    Article  CAS  PubMed  Google Scholar 

  6. von Both U, Berk M, Agapow PM, et al. Mycobacterium tuberculosis exploits a molecular off switch of the immune system for intracellular survival. Sci Rep. 2018;8(1):661. https://doi.org/10.1038/s41598-017-18528-y.

    Article  CAS  Google Scholar 

  7. Franzenburg S, Fraune S, Kunzel S, Baines JF, Domazet-Loso T, Bosch TCG. MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers. Proc Natl Acad Sci. 2012;109(47):19374–9. https://doi.org/10.1073/pnas.1213110109.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu H, Yang M, Tang X, et al. Molecular insights of a novel fish Toll-like receptor 9 homologue in Nibea albiflora to reveal its function as PRRs. Fish Shellfish Immunol. 2021;118:321–32. https://doi.org/10.1016/j.fsi.2021.09.021.

    Article  CAS  PubMed  Google Scholar 

  9. Shepardson KM, Schwarz B, Larson K, et al. Induction of antiviral immune response through recognition of the repeating subunit pattern of viral capsids is Toll-like receptor 2 dependent. MBio. 2017;8(6): e01356-17. https://doi.org/10.1128/mBio.01356-17.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gosu V, Son S, Shin D, Song KD. Insights into the dynamic nature of the dsRNA-bound TLR3 complex. Sci Rep. 2019;9(1):3652. https://doi.org/10.1038/s41598-019-39984-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu L, Phillips RL, Zhang D, Teghanemt A, Weiss JP, Gioannini TL. NMR studies of hexaacylated endotoxin bound to wild-type and F126A mutant MD-2 and MD-2·TLR4 ectodomain complexes. J Biol Chem. 2012;287(20):16346–55. https://doi.org/10.1074/jbc.M112.343467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Voogdt CGP, Wagenaar JA, van Putten JPM. Duplicated TLR5 of zebrafish functions as a heterodimeric receptor. Proc Natl Acad Sci USA. 2018;115(14):E3221–9. https://doi.org/10.1073/pnas.1719245115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang S, Hu Z, Tanji H, et al. Small-molecule inhibition of TLR8 through stabilization of its resting state. Nat Chem Biol. 2018;14(1):58–64. https://doi.org/10.1038/nchembio.2518.

    Article  CAS  PubMed  Google Scholar 

  14. Fuchs K, Cardona Gloria Y, Wolz O, et al. The fungal ligand chitin directly binds TLR 2 and triggers inflammation dependent on oligomer size. EMBO Rep. 2018;19(12):e46065. https://doi.org/10.15252/embr.201846065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bermudez M, Grabowski M, Murgueitio MS, et al. Biological characterization, mechanistic investigation and structure-activity relationships of chemically stable TLR2 antagonists. ChemMedChem. 2020;15(14):1364–71. https://doi.org/10.1002/cmdc.202000060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang WC, Liou CJ, Shen SC, et al. Urolithin A inactivation of TLR3/TRIF signaling to block the NF-κB/STAT1 axis reduces inflammation and enhances antioxidant defense in poly(I:C)-induced RAW264.7 cells. Int J Mol Sci. 2022;23(9):4697. https://doi.org/10.3390/ijms23094697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anderson JA, Loes AN, Waddell GL, Harms MJ. 2009 Tracing the evolution of novel features of human Toll-like receptor 4. Protein Sci. 2019;28:1350–8. https://doi.org/10.1002/pro.3644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kwon JO, Jin WJ, Kim B, Ha H, Kim HH, Lee ZH. Haptoglobin acts as a TLR4 ligand to suppress osteoclastogenesis via the TLR4–IFN-β axis. J Immunol. 2019;202(12):3359–69. https://doi.org/10.4049/jimmunol.1800661.

    Article  CAS  PubMed  Google Scholar 

  19. Nicholas SA, Coughlan K, Yasinska I, et al. Dysfunctional mitochondria contain endogenous high-affinity human Toll-like receptor 4 (TLR4) ligands and induce TLR4-mediated inflammatory reactions. Int J Biochem Cell Biol. 2011;43(4):674–81. https://doi.org/10.1016/j.biocel.2011.01.012.

    Article  CAS  PubMed  Google Scholar 

  20. Lei X, Palomero J, de Rink I, et al. Flagellin/TLR5 stimulate myeloid progenitors to enter lung tissue and to locally differentiate into macrophages. Front Immunol. 2021;12: 621665. https://doi.org/10.3389/fimmu.2021.621665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lendeckel U, Venz S, Wolke C. Macrophages: shapes and functions. ChemTexts. 2022;8(2):12. https://doi.org/10.1007/s40828-022-00163-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wong AO, Marthi M, Haag A, Owusu IA, Wobus CE, Swanson JA. Macrophage inflammatory state influences susceptibility to lysosomal damage. J Leukoc Biol. 2022;111(3):629–39. https://doi.org/10.1002/JLB.3A0520-325RR.

    Article  CAS  PubMed  Google Scholar 

  23. Lim YJ, Yi MH, Choi JA, et al. Roles of endoplasmic reticulum stress-mediated apoptosis in M1-polarized macrophages during mycobacterial infections. Sci Rep. 2016;6:37211. https://doi.org/10.1038/srep37211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fortingo N, Melnyk S, Sutton SH, Watsky MA, Bollag WB. Innate immune system activation, inflammation and corneal wound healing. Int J Mol Sci. 2022;23(23):14933. https://doi.org/10.3390/ijms232314933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dunston CR, Griffiths HR. The effect of ageing on macrophage Toll-like receptor-mediated responses in the fight against pathogens. Clin Exp Immunol. 2010;161(3):407–16. https://doi.org/10.1111/j.1365-2249.2010.04213.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol. 2017;14(12):963–75. https://doi.org/10.1038/cmi.2017.88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell. 2020;180(6):1044–66. https://doi.org/10.1016/j.cell.2020.02.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Irizarry-Caro RA, McDaniel MM, Overcast GR, Jain VG, Troutman TD, Pasare C. TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc Natl Acad Sci USA. 2020;117(48):30628–38. https://doi.org/10.1073/pnas.2009778117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Veltkamp M, van Moorsel CHM, Rijkers GT, Ruven HJT, Grutters JC. Genetic variation in the Toll-like receptor gene cluster (TLR10-TLR1-TLR6) influences disease course in sarcoidosis. Tissue Antigens. 2012;79(1):25–32. https://doi.org/10.1111/j.1399-0039,2011.01808.x.

    Article  CAS  PubMed  Google Scholar 

  30. Shukla S, Richardson ET, Drage MG, Boom WH, Harding CV. Mycobacterium tuberculosis lipoprotein and lipoglycan binding to Toll-like receptor 2 correlates with agonist activity and functional outcomes. Infect Immun. 2018;86(10): e00450-18. https://doi.org/10.1128/IAI.00450-18.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hu W, Yang S, Shimada Y, et al. Infection and RNA-seq analysis of a zebrafish tlr2 mutant shows a broad function of this toll-like receptor in transcriptional and metabolic control and defense to Mycobacterium marinum infection. BMC Genomics. 2019;20(1):878. https://doi.org/10.1186/s12864-019-6265-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kielbik M, Szulc-Kielbik I, Klink M. IRAK1 and IRAK4 signaling proteins are dispensable in the response of human neutrophils to Mycobacterium tuberculosis infection. FEMS Microbiol Lett. 2019;366(18):fnz226. https://doi.org/10.1093/femsle/fnz226.

    Article  CAS  PubMed  Google Scholar 

  33. Ernst O, Vayttaden SJ, Fraser IDC. Measurement of NF-κB activation in TLR-activated macrophages. In: De Nardo D, De Nardo CM, editors. Innate immune activation. Vol 1714. Methods in molecular biology. New York: Springer; 2018, pp. 67–78. https://doi.org/10.1007/978-1-4939-7519-8_5.

  34. Alvarez-Jiménez VD, Leyva-Paredes K, García-Martínez M, et al. Extracellular vesicles released from Mycobacterium tuberculosis-infected neutrophils promote macrophage autophagy and decrease intracellular mycobacterial survival. Front Immunol. 2018;9:272. https://doi.org/10.3389/fimmu.2018.00272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Szulc-Kielbik I, Kielbik M, Przygodzka P, Brzostek A, Dziadek J, Klink M. Mycobacterium tuberculosis requires cholesterol oxidase to disrupt TLR2 signalling in human macrophages. Mediators Inflamm. 2019;2019:1–17. https://doi.org/10.1155/2019/2373791.

    Article  CAS  Google Scholar 

  36. Bednarska K, Kielbik M, Sulowska Z, Dziadek J, Klink M. Cholesterol oxidase binds TLR2 and modulates functional responses of human macrophages. Mediators Inflamm. 2014;2014: 498395. https://doi.org/10.1155/2014/498395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Klink M, Brzezinska M, Szulc I, et al. Cholesterol oxidase is indispensable in the pathogenesis of Mycobacterium tuberculosis. PLoS ONE. 2013;8(9): e73333. https://doi.org/10.1371/journal.pone.0073333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Palucci I, Camassa S, Cascioferro A, et al. PE_PGRS33 contributes to Mycobacterium tuberculosis entry in macrophages through interaction with TLR2. PLoS ONE. 2016;11(3): e0150800. https://doi.org/10.1371/journal.pone.0150800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Minerva M, De Maio F, Camassa S, et al. Evaluation of PE_PGRS33 as a potential surface target for humoral responses against Mycobacterium tuberculosis. Pathog Dis. 2017;75(8):1093–100. https://doi.org/10.1093/femspd/ftx100.

    Article  CAS  Google Scholar 

  40. Basu S, Pathak SK, Banerjee A, et al. Execution of macrophage apoptosis by PE_PGRS33 of Mycobacterium tuberculosis is mediated by Toll-like receptor 2-dependent release of tumor necrosis factor-alpha. J Biol Chem. 2007;282(2):1039–50. https://doi.org/10.1074/jbc.M604379200.

    Article  CAS  PubMed  Google Scholar 

  41. Liu Y, Li JY, Chen ST, Huang HR, Cai H. The rLrp of Mycobacterium tuberculosis inhibits proinflammatory cytokine production and downregulates APC function in mouse macrophages via a TLR2-mediated PI3K/Akt pathway activation-dependent mechanism. Cell Mol Immunol. 2016;13(6):729–46. https://doi.org/10.1038/cmi.2015.58.

    Article  CAS  PubMed  Google Scholar 

  42. Pattanaik KP, Ganguli G, Naik SK, Sonawane A. Mycobacterium tuberculosis EsxL induces TNF-α secretion through activation of TLR2 dependent MAPK and NF-κB pathways. Mol Immunol. 2021;130:133–41. https://doi.org/10.1016/j.molimm.2020.11.020.

    Article  CAS  PubMed  Google Scholar 

  43. Su H, Zhang Z, Liu Z, et al. Mycobacterium tuberculosis PPE60 antigen drives Th1/Th17 responses via Toll-like receptor 2-dependent maturation of dendritic cells. J Biol Chem. 2018;293(26):10287–302. https://doi.org/10.1074/jbc.RA118.001696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Su H, Kong C, Zhu L, et al. PPE26 induces TLR2-dependent activation of macrophages and drives Th1-type T-cell immunity by triggering the cross-talk of multiple pathways involved in the host response. Oncotarget. 2015;6(36):38517–37. https://doi.org/10.18632/oncotarget.5956.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yihao D, Hongyun H, Maodan T. Latency-associated protein Rv2660c of Mycobacterium tuberculosis augments expression of proinflammatory cytokines in human macrophages by interacting with TLR2. Infect Dis (Lond). 2015;47(3):168–77. https://doi.org/10.3109/00365548.2014.982167.

    Article  CAS  PubMed  Google Scholar 

  46. Li W, Deng W, Zhang N, Peng H, Xu Y. Mycobacterium tuberculosis Rv2387 facilitates mycobacterial survival by silencing TLR2/p38/JNK signaling. Pathogens. 2022;11(9):981. https://doi.org/10.3390/pathogens11090981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Manjunath P, Ahmad J, Samal J, et al. Mycobacterium tuberculosis specific protein Rv1509 evokes efficient innate and adaptive immune response indicative of protective Th1 immune signature. Front Immunol. 2021;12: 706081. https://doi.org/10.3389/fimmu.2021.706081.

    Article  CAS  Google Scholar 

  48. Gao X, Wu C, He W, et al. DosR antigen Rv1737c induces activation of macrophages dependent on the TLR2 pathway. Cell Immunol. 2019;344: 103947. https://doi.org/10.1016/j.cellimm.2019.103947.

    Article  CAS  PubMed  Google Scholar 

  49. Su H, Zhu S, Zhu L, et al. Recombinant lipoprotein Rv1016c derived from Mycobacterium tuberculosis is a TLR-2 ligand that induces macrophages apoptosis and inhibits MHC II antigen processing. Front Cell Infect Microbiol. 2016;6:147. https://doi.org/10.3389/fcimb.2016.00147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA. 1998;95(2):588–93. https://doi.org/10.1073/pnas.95.2.588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Datta SK, Redecke V, Prilliman KR, et al. A subset of Toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells. J Immunol. 2003;170(8):4102–10. https://doi.org/10.4049/jimmunol.170.8.4102.

    Article  CAS  PubMed  Google Scholar 

  52. Lv HL, Yu J, Pei JF, Wang HY, Guo ZL. TIR-domain-containing adapter-inducing interferon-β contributes to TLR3/TLR4 triggered apoptosis and inflammation in nucleus pulposus cells. J Biol Regul Homeost Agents. 2020;34(2):445–55. https://doi.org/10.23812/20-66-A-35.

    Article  CAS  PubMed  Google Scholar 

  53. Bai W, Liu H, Ji Q, et al. TLR3 regulates mycobacterial RNA-induced IL-10 production through the PI3K/AKT signaling pathway. Cell Signal. 2014;26(5):942–50. https://doi.org/10.1016/j.cellsig.2014.01.015.

    Article  CAS  PubMed  Google Scholar 

  54. Abel B, Thieblemont N, Quesniaux VJF, et al. Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J Immunol. 2002;169(6):3155–62. https://doi.org/10.4049/jimmunol.169.6.3155.

    Article  CAS  PubMed  Google Scholar 

  55. Mazurek J, Ignatowicz L, Kallenius G, Svenson SB, Pawlowski A, Hamasur B. Divergent effects of mycobacterial cell wall glycolipids on maturation and function of human monocyte-derived dendritic cells. Kovats S, ed. PLoS ONE. 2012;7(8):e42515. https://doi.org/10.1371/journal.pone.0042515.

  56. Jang AR, Choi JH, Shin SJ, Park JH. Mycobacterium tuberculosis ESAT6 induces IFN-β gene expression in macrophages via TLRs-mediated signaling. Cytokine. 2018;104:104–9. https://doi.org/10.1016/j.cyto.2017.10.006.

    Article  CAS  PubMed  Google Scholar 

  57. Pahari S, Negi S, Aqdas M, Arnett E, Schlesinger LS, Agrewala JN. Induction of autophagy through CLEC4E in combination with TLR4: an innovative strategy to restrict the survival of Mycobacterium tuberculosis. Autophagy. 2020;16(6):1021–43. https://doi.org/10.1080/15548627.2019.1658436.

    Article  CAS  PubMed  Google Scholar 

  58. Choi HG, Choi S, Back YW, et al. Mycobacterium tuberculosis Rv2882c protein induces activation of macrophages through TLR4 and exhibits vaccine potential. PLoS ONE. 2016;11(10): e0164458. https://doi.org/10.1371/journal.pone.0164458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim K, Sohn H, Kim JS, et al. Mycobacterium tuberculosis Rv0652 stimulates production of tumour necrosis factor and monocytes chemoattractant protein-1 in macrophages through the Toll-like receptor 4 pathway. Immunology. 2012;136(2):231–40. https://doi.org/10.1111/j.1365-2567.2012.03575.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shariq M, Quadir N, Sharma N, et al. Mycobacterium tuberculosis RipA dampens TLR4-mediated host protective response using a multi-pronged approach involving autophagy, apoptosis, metabolic repurposing, and immune modulation. Front Immunol. 2021;12: 636644. https://doi.org/10.3389/fimmu.2021.636644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nehvi IB, Quadir N, Khubaib M, et al. ArgD of Mycobacterium tuberculosis is a functional N-acetylornithine aminotransferase with moonlighting function as an effective immune modulator. Int J Med Microbiol. 2022;312(1): 151544. https://doi.org/10.1016/j.ijmm.2021.151544.

    Article  CAS  PubMed  Google Scholar 

  62. Quadir N, Shariq M, Sheikh JA, et al. Mycobacterium tuberculosis protein MoxR1 enhances virulence by inhibiting host cell death pathways and disrupting cellular bioenergetics. Virulence. 2023;14(1):2180230. https://doi.org/10.1080/21505594.2023.2180230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bhatt P, Sharma M, Prakash Sharma P, Rathi B, Sharma S. Mycobacterium tuberculosis dormancy regulon proteins Rv2627c and Rv2628 as Toll like receptor agonist and as potential adjuvant. Int Immunopharmacol. 2022;112: 109238. https://doi.org/10.1016/j.intimp.2022.109238.

    Article  CAS  PubMed  Google Scholar 

  64. Park HS, Back YW, Shin KW, et al. Mycobacterium tuberculosis Rv3463 induces mycobactericidal activity in macrophages by enhancing phagolysosomal fusion and exhibits therapeutic potential. Sci Rep. 2019;9(1):4246. https://doi.org/10.1038/s41598-019-38982-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee KI, Choi S, Choi HG, et al. Recombinant Rv3261 protein of Mycobacterium tuberculosis induces apoptosis through a mitochondrion-dependent pathway in macrophages and inhibits intracellular bacterial growth. Cell Immunol. 2020;354: 104145. https://doi.org/10.1016/j.cellimm.2020.104145.

    Article  CAS  PubMed  Google Scholar 

  66. Lee KI, Choi S, Choi HG, et al. Recombinant Rv1654 protein of Mycobacterium tuberculosis induces mitochondria-mediated apoptosis in macrophage. Microbiol Immunol. 2021;65(4):178–88. https://doi.org/10.1111/1348-0421.12880.

    Article  CAS  PubMed  Google Scholar 

  67. Medha, Priyanka, Bhatt P, Sharma S, Sharma M. Role of C-terminal domain of Mycobacterium tuberculosis PE6 (Rv0335c) protein in host mitochondrial stress and macrophage apoptosis. Apoptosis. 2023;28(1–2):136–65. https://doi.org/10.1007/s10495-022-01778-1.

    Article  CAS  PubMed  Google Scholar 

  68. Sharma T, Singh J, Grover S, et al. PGRS domain of Rv0297 of Mycobacterium tuberculosis functions in a calcium dependent manner. Int J Mol Sci. 2021;22(17):9390. https://doi.org/10.3390/ijms22179390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Grover S, Sharma T, Singh Y, et al. The PGRS domain of Mycobacterium tuberculosis PE_PGRS Protein Rv0297 is involved in endoplasmic reticulum stress-mediated apoptosis through Toll-like receptor 4. MBio. 2018;9(3): e01017-18. https://doi.org/10.1128/mBio.01017-18.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hs P, Yw B, It J, et al. Mycobacterium tuberculosis Rv2145c promotes intracellular survival by STAT3 and IL-10 receptor signaling. Front Immunol. 2021;12: 666293. https://doi.org/10.3389/fimmu.2021.666293.

    Article  CAS  Google Scholar 

  71. Lai YF, Lin TM, Wang CH, et al. Functional polymorphisms of the TLR7 and TLR8 genes contribute to Mycobacterium tuberculosis infection. Tuberculosis (Edinb). 2016;98:125–31. https://doi.org/10.1016/j.tube.2016.03.008.

    Article  CAS  PubMed  Google Scholar 

  72. Bakhru P, Sirisaengtaksin N, Soudani E, Mukherjee S, Khan A, Jagannath C. BCG vaccine mediated reduction in the MHC-II expression of macrophages and dendritic cells is reversed by activation of Toll-like receptors 7 and 9. Cell Immunol. 2014;287(1):53–61. https://doi.org/10.1016/j.cellimm.2013.11.007.

    Article  CAS  PubMed  Google Scholar 

  73. Pawar K, Shigematsu M, Sharbati S, Kirino Y. Infection-induced 5’-half molecules of tRNA His GUG activate Toll-like receptor 7. PLoS Biol. 2020;18(12): e3000982. https://doi.org/10.1371/journal.pbio.3000982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu YC, Simmons DP, Li X, Abbott DW, Boom WH, Harding CV. TLR2 signaling depletes IRAK1 and inhibits induction of type I IFN by TLR7/9. J Immunol. 2012;188(3):1019–26. https://doi.org/10.4049/jimmunol.1102181.

    Article  CAS  PubMed  Google Scholar 

  75. Nguyen H, Gazy N, Venketaraman V. A role of intracellular Toll-like receptors (3, 7, and 9) in response to Mycobacterium tuberculosis and co-infection with HIV. Int J Mol Sci. 2020;21(17):6148. https://doi.org/10.3390/ijms21176148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chuang TH, Ulevitch RJ. Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw. 2000;11(3):372–8.

    CAS  PubMed  Google Scholar 

  77. Tang J, Sun M, Shi G, et al. Toll-like receptor 8 agonist strengthens the protective efficacy of ESAT-6 immunization to Mycobacterium tuberculosis Infection. Front Immunol. 2018;8:1972. https://doi.org/10.3389/fimmu.2017.01972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Salie M, Daya M, Lucas LA, et al. Association of toll-like receptors with susceptibility to tuberculosis suggests sex-specific effects of TLR8 polymorphisms. Infect Genet Evol. 2015;34:221–9. https://doi.org/10.1016/j.meegid.2015.07.004.

    Article  CAS  PubMed  Google Scholar 

  79. Keegan C, Krutzik S, Schenk M, et al. Mycobacterium tuberculosis transfer RNA induces IL-12p70 via synergistic activation of pattern recognition receptors within a cell network. J Immunol. 2018;200(9):3244–58. https://doi.org/10.4049/jimmunol.1701733.

    Article  CAS  PubMed  Google Scholar 

  80. Tang J, Zhan L, Qin C. Inhibition of TLR8 mediated signaling promotes BCG induced apoptosis in THP-1 cells. Microb Pathog. 2016;93:78–82. https://doi.org/10.1016/j.micpath.2015.11.028.

    Article  CAS  PubMed  Google Scholar 

  81. Wang MG, Zhang MM, Wang Y, Wu SQ, Zhang M, He JQ. Association of TLR8 and TLR9 polymorphisms with tuberculosis in a Chinese Han population: a case-control study. BMC Infect Dis. 2018;18(1):561. https://doi.org/10.1186/s12879-018-3485-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jin Y, Zhuang Y, Dong X, Liu M. Development of CpG oligodeoxynucleotide TLR9 agonists in anti-cancer therapy. Expert Rev Anticancer Ther. 2021;21(8):841–51. https://doi.org/10.1080/14737140.2021.1915136.

    Article  CAS  PubMed  Google Scholar 

  83. Choi SS, Chung E, Jung YJ. Newly identified CpG ODNs, M5–30 and M6–395, stimulate mouse immune cells to secrete TNF-alpha and enhance Th1-mediated immunity. J Microbiol. 2010;48(4):512–7. https://doi.org/10.1007/s12275-010-0053-6.

    Article  CAS  PubMed  Google Scholar 

  84. Zyzak J, Mitkiewicz M, Leszczyńska E, Reniewicz P, Moynagh PN, Siednienko J. HSV-1/TLR9-mediated IFNβ and TNFα induction is mal-dependent in macrophages. J Innate Immun. 2020;12(5):387–98. https://doi.org/10.1159/000504542.

    Article  CAS  PubMed  Google Scholar 

  85. Li J, Fu L, Wang G, Subbian S, Qin C, Zhao A. Unmethylated CpG motif-containing genomic DNA fragment of Bacillus calmette-guerin promotes macrophage functions through TLR9-mediated activation of NF-κB and MAPKs signaling pathways. Innate Immun. 2020;26(3):183–203. https://doi.org/10.1177/1753425919879997.

    Article  CAS  PubMed  Google Scholar 

  86. Ohto U, Ishida H, Shibata T, Sato R, Miyake K, Shimizu T. Toll-like receptor 9 contains two DNA binding sites that function cooperatively to promote receptor dimerization and activation. Immunity. 2018;48(4):649-658.e4. https://doi.org/10.1016/j.immuni.2018.03.013.

    Article  CAS  PubMed  Google Scholar 

  87. Ruiz A, Guzmán-Beltrán S, Carreto-Binaghi LE, Gonzalez Y, Juárez E. DNA from virulent M. tuberculosis induces TNF-α production and autophagy in M1 polarized macrophages. Microb Pathog. 2019;132:166–77. https://doi.org/10.1016/j.micpath.2019.04.041.

    Article  CAS  PubMed  Google Scholar 

  88. Troy A, Esparza-Gonzalez SC, Bartek A, Creissen E, Izzo L, Izzo AA. Pulmonary mucosal immunity mediated through CpG provides adequate protection against pulmonary Mycobacterium tuberculosis infection in the mouse model. A role for type I interferon. Tuberculosis (Edinb. 2020;123: 101949. https://doi.org/10.1016/j.tube.2020.101949.

    Article  CAS  PubMed  Google Scholar 

  89. Coelho da Silva FD, Covre LP, Stringari LL, et al. Toll-like receptors blocking restores in vitro microbicidal activity in latent tuberculosis-infected subjects. Int J Tuberc Lung Dis. 2019;23(2):212–8. https://doi.org/10.5588/ijtld.18.0392.

    Article  CAS  PubMed  Google Scholar 

  90. Li W, He P, Huang Y, et al. Selective autophagy of intracellular organelles: recent research advances. Theranostics. 2021;11(1):222–56. https://doi.org/10.7150/thno.49860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mesquita A, Glenn J, Jenny A. Differential activation of eMI by distinct forms of cellular stress. Autophagy. 2021;17(8):1828–40. https://doi.org/10.1080/15548627.2020.1783833.

    Article  CAS  PubMed  Google Scholar 

  92. Park JM, Kim DH. A paradigm shift: AMPK negatively regulates ULK1 activity. Autophagy. 2023;1–3. https://doi.org/10.1080/15548627.2023.2223465.

  93. Nitta A, Hori K, Tanida I, et al. Blocking LC3 lipidation and ATG12 conjugation reactions by ATG7 mutant protein containing C572S. Biochem Biophys Res Commun. 2019;508(2):521–6. https://doi.org/10.1016/j.bbrc.2018.11.158.

    Article  CAS  PubMed  Google Scholar 

  94. Iriondo MN, Alonso A. Vesicle tethering and fusion promoted by LC3/GABARAP proteins is modulated by the ATG12-ATG5-ATG16L1 complex. Autophagy. 2023;19(10):2827–9. https://doi.org/10.1080/15548627.2023.2202557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Seto S, Tsujimura K, Horii T, Koide Y. Autophagy adaptor protein p62/SQSTM1 and autophagy-related gene Atg5 mediate autophagosome formation in response to Mycobacterium tuberculosis infection in dendritic cells. PLoS ONE. 2013;8(12): e86017. https://doi.org/10.1371/journal.pone.0086017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Abreu S, Kriegenburg F, Gómez-Sánchez R, et al. Conserved Atg8 recognition sites mediate Atg4 association with autophagosomal membranes and Atg8 deconjugation. EMBO Rep. 2017;18(5):765–80. https://doi.org/10.15252/embr.201643146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Esteves AR, Filipe F, Magalhães JD, Silva DF, Cardoso SM. The role of Beclin-1 acetylation on autophagic flux in Alzheimer’s disease. Mol Neurobiol. 2019;56(8):5654–70. https://doi.org/10.1007/s12035-019-1483-8.

    Article  CAS  PubMed  Google Scholar 

  98. Yang Z, Huang J, Geng J, Nair U, Klionsky DJ. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell. 2006;17(12):5094–104. https://doi.org/10.1091/mbc.e06-06-0479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kimmey JM, Huynh JP, Weiss LA, et al. Unique role for ATG5 in PMN-mediated immunopathology during M. tuberculosis infection. Nature. 2015;528(7583):565–9. https://doi.org/10.1038/nature16451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Aylan B, Bernard EM, Pellegrino E, et al. ATG7 and ATG14 restrict cytosolic and phagosomal Mycobacterium tuberculosis replication in human macrophages. Nat Microbiol. 2023;8(5):803–18. https://doi.org/10.1038/s41564-023-01335-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Deng W, Long Q, Zeng J, et al. Mycobacterium tuberculosis PE_PGRS41 enhances the intracellular survival of M. smegmatis within macrophages via blocking innate immunity and inhibition of host defense. Sci Rep. 2017;7:46716. https://doi.org/10.1038/srep46716.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wu Y, Lin X, Song F, Xue D, Wang Y. Vitamin D3 promotes autophagy in THP-1 cells infected with Mycobacterium tuberculosis. Exp Ther Med. 2022;23(3):240. https://doi.org/10.3892/etm.2022.11165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dong W, Wang G, Feng J, et al. MiR-25 blunts autophagy and promotes the survival of Mycobacterium tuberculosis by regulating NPC1. iScience. 2022;25(5): 104279. https://doi.org/10.1016/j.isci.2022.104279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sharma D, Tiwari BK, Mehto S, et al. Suppression of protective responses upon activation of L-type voltage gated calcium channel in macrophages during Mycobacterium bovis BCG infection. PLoS ONE. 2016;11(10): e0163845. https://doi.org/10.1371/journal.pone.0163845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee HJ, Kang SJ, Woo Y, Hahn TW, Ko HJ, Jung YJ. TLR7 stimulation with imiquimod induces selective autophagy and controls Mycobacterium tuberculosis growth in mouse macrophages. Front Microbiol. 2020;11:1684. https://doi.org/10.3389/fmicb.2020.01684.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhang Q, Sun J, Wang Y, et al. Antimycobacterial and anti-inflammatory mechanisms of Baicalin via induced autophagy in macrophages infected with Mycobacterium tuberculosis. Front Microbiol. 2017;8:2142. https://doi.org/10.3389/fmicb.2017.02142.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gluschko A, Farid A, Herb M, Grumme D, Krönke M, Schramm M. Macrophages target Listeria monocytogenes by two discrete non-canonical autophagy pathways. Autophagy. 2022;18(5):1090–107. https://doi.org/10.1080/15548627.2021.1969765.

    Article  CAS  PubMed  Google Scholar 

  108. Köster S, Upadhyay S, Chandra P, et al. Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA. Proc Natl Acad Sci USA. 2017;114(41):E8711–20. https://doi.org/10.1073/pnas.1707792114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hu D, Wu J, Zhang R, et al. Autophagy-targeted vaccine of LC3-LpqH DNA and its protective immunity in a murine model of tuberculosis. Vaccine. 2014;32(20):2308–14. https://doi.org/10.1016/j.vaccine.2014.02.069.

    Article  CAS  PubMed  Google Scholar 

  110. Shin DM, Yuk JM, Lee HM, et al. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell Microbiol. 2010;12(11):1648–65. https://doi.org/10.1111/j.1462-5822.2010.01497.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Strong EJ, Wang J, Ng TW, Porcelli SA, Lee S. Mycobacterium tuberculosis PPE51 inhibits autophagy by suppressing Toll-like receptor 2-dependent signaling. MBio. 2022;13(3): e0297421. https://doi.org/10.1128/mbio.02974-21.

    Article  CAS  PubMed  Google Scholar 

  112. Bah A, Sanicas M, Nigou J, Guilhot C, Astarie-Dequeker C, Vergne I. The lipid virulence factors of Mycobacterium tuberculosis exert multilayered control over autophagy-related pathways in infected human macrophages. Cells. 2020;9(3):E666. https://doi.org/10.3390/cells9030666.

    Article  CAS  Google Scholar 

  113. Padhi A, Pattnaik K, Biswas M, Jagadeb M, Behera A, Sonawane A. Mycobacterium tuberculosis LprE suppresses TLR2-dependent cathelicidin and autophagy expression to enhance bacterial survival in macrophages. J Immunol. 2019;203(10):2665–78. https://doi.org/10.4049/jimmunol.1801301.

    Article  CAS  PubMed  Google Scholar 

  114. Shi CS, Kehrl JH. MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem. 2008;283(48):33175–82. https://doi.org/10.1074/jbc.M804478200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sharma N, Shariq M, Quadir N, et al. Mycobacterium tuberculosis protein PE6 (Rv0335c), a novel TLR4 agonist, evokes an inflammatory response and modulates the cell death pathways in macrophages to enhance intracellular survival. Front Immunol. 2021;12: 696491. https://doi.org/10.3389/fimmu.2021.696491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bao M, Yi Z, Fu Y. Activation of TLR7 inhibition of Mycobacterium tuberculosis survival by autophagy in RAW 264.7 macrophages. J Cell Biochem. 2017;118(12):4222–9. https://doi.org/10.1002/jcb.26072.

    Article  CAS  PubMed  Google Scholar 

  117. Bonilla DL, Bhattacharya A, Sha Y, et al. Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity. 2013;39(3):537–47. https://doi.org/10.1016/j.immuni.2013.08.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Watson RO, Manzanillo PS, Cox JS. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell. 2012;150(4):803–15. https://doi.org/10.1016/j.cell.2012.06.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dong H, Jing W, Runpeng Z, et al. ESAT6 inhibits autophagy flux and promotes BCG proliferation through MTOR. Biochem Biophys Res Commun. 2016;477(2):195–201. https://doi.org/10.1016/j.bbrc.2016.06.042.

    Article  CAS  PubMed  Google Scholar 

  120. Huang D, Bao L. Mycobacterium tuberculosis EspB protein suppresses interferon-γ-induced autophagy in murine macrophages. J Microbiol Immunol Infect. 2016;49(6):859–65. https://doi.org/10.1016/j.jmii.2014.11.008.

    Article  CAS  PubMed  Google Scholar 

  121. Romagnoli A, Etna MP, Giacomini E, et al. ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy. 2012;8(9):1357–70. https://doi.org/10.4161/auto.20881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chatterjee S, Dwivedi VP, Singh Y, et al. Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes protective T helper 17 cell responses in a Toll-like receptor-2-dependent manner. PLoS Pathog. 2011;7(11): e1002378. https://doi.org/10.1371/journal.ppat.1002378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119(6):753–66. https://doi.org/10.1016/j.cell.2004.11.038.

    Article  CAS  PubMed  Google Scholar 

  124. Chen W, Liu Z, Zheng Y, et al. Selenium donor restricts the intracellular growth of Mycobacterium tuberculosis through the induction of c-Jun-mediated both canonical autophagy and LC3-associated phagocytosis of alveolar macrophages. Microb Pathog. 2021;161: 105269. https://doi.org/10.1016/j.micpath.2021.105269.

    Article  CAS  PubMed  Google Scholar 

  125. Kim TS, Jin YB, Kim YS, et al. SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions. Autophagy. 2019;15(8):1356–75. https://doi.org/10.1080/15548627.2019.1582743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang J, Sha J, Strong E, Chopra AK, Lee S. FDA-approved amoxapine effectively promotes macrophage control of mycobacteria by inducing autophagy. Microbiol Spectr. 2022;10(5): e0250922. https://doi.org/10.1128/spectrum.02509-22.

    Article  CAS  PubMed  Google Scholar 

  127. Kim JJ, Lee HM, Shin DM, et al. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe. 2012;11(5):457–68. https://doi.org/10.1016/j.chom.2012.03.008.

    Article  CAS  PubMed  Google Scholar 

  128. Singh DK, Bhaskar A, Pahuja I, et al. Cotreatment with clofazimine and rapamycin eliminates drug-resistant tuberculosis by inducing polyfunctional central memory T-cell responses. J Infect Dis. 2023;228(9):1166–78. https://doi.org/10.1093/infdis/jiad214.

    Article  CAS  PubMed  Google Scholar 

  129. Bhatt K, Bhagavathula M, Verma S, et al. Rapamycin modulates pulmonary pathology in a murine model of Mycobacterium tuberculosis infection. Dis Model Mech. 2021;14(10): dmm049018. https://doi.org/10.1242/dmm.049018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hussain T, Zhao D, Shah SZA, et al. Nilotinib: a tyrosine kinase inhibitor mediates resistance to intracellular Mycobacterium via regulating autophagy. Cells. 2019;8(5):506. https://doi.org/10.3390/cells8050506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schiebler M, Brown K, Hegyi K, et al. Functional drug screening reveals anticonvulsants as enhancers of mTOR-independent autophagic killing of Mycobacterium tuberculosis through inositol depletion. EMBO Mol Med. 2015;7(2):127–39. https://doi.org/10.15252/emmm.201404137.

    Article  CAS  PubMed  Google Scholar 

  132. Chen G, Wu B, Wu M, Liu F, Qin C, Luo W. Autophagy-related genes affect drug resistance of mycobacteria by regulating autophagy. Int J Clin Exp Pathol. 2019;12(6):2001–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Rao Muvva J, Ahmed S, Rekha RS, et al. Immunomodulatory agents combat multidrug-resistant tuberculosis by improving antimicrobial immunity. J Infect Dis. 2021;224(2):332–44. https://doi.org/10.1093/infdis/jiab100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kan LLY, Liu D, Chan BCL, et al. The flavonoids of Sophora flavescens exerts anti-inflammatory activity via promoting autophagy of Bacillus Calmette-Guérin-stimulated macrophages. J Leukoc Biol. 2020;108(5):1615–29. https://doi.org/10.1002/JLB.3MA0720-682RR.

    Article  CAS  PubMed  Google Scholar 

  135. Gupta PK, Jahagirdar P, Tripathi D, Devarajan PV, Kulkarni S. Macrophage targeted polymeric curcumin nanoparticles limit intracellular survival of Mycobacterium tuberculosis through induction of autophagy and augment anti-TB activity of isoniazid in RAW 264.7 macrophages. Front Immunol. 2023;14:1233630. https://doi.org/10.3389/fimmu.2023.1233630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lee YJ, Kim JK, Jung CH, et al. Chemical modulation of SQSTM1/p62-mediated xenophagy that targets a broad range of pathogenic bacteria. Autophagy. 2022;18(12):2926–45. https://doi.org/10.1080/15548627.2022.2054240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Boland R, Heemskerk MT, Forn-Cuní G, et al. Repurposing tamoxifen as potential host-directed therapeutic for tuberculosis. MBio. 2023;14(1): e0302422. https://doi.org/10.1128/mbio.03024-22.

    Article  CAS  PubMed  Google Scholar 

  138. Singh S, Yabaji SM, Ali R, Srivastava KK, Haq W. Synthesis and biological activity of Ub2 derived peptides as potential host-directed antitubercular therapy. Chem Biol Drug Des. 2019;94(1):1330–8. https://doi.org/10.1111/cbdd.13508.

    Article  CAS  PubMed  Google Scholar 

  139. Giraud-Gatineau A, Coya JM, Maure A, et al. The antibiotic bedaquiline activates host macrophage innate immune resistance to bacterial infection. Elife. 2020;9: e55692. https://doi.org/10.7554/eLife.55692.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Khan N, Pahari S, Vidyarthi A, Aqdas M, Agrewala JN. Stimulation through CD40 and TLR-4 is an effective host directed therapy against Mycobacterium tuberculosis. Front Immunol. 2016;7:386. https://doi.org/10.3389/fimmu.2016.00386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sánchez A, Espinosa P, García T, Mancilla R. The 19 kDa Mycobacterium tuberculosis lipoprotein (LpqH) induces macrophage apoptosis through extrinsic and intrinsic pathways: a role for the mitochondrial apoptosis-inducing factor. Clin Dev Immunol. 2012;2012: 950503. https://doi.org/10.1155/2012/950503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding support from the National Nature Science Foundation of China (NSFC) (No. 81860291).

Author information

Authors and Affiliations

Authors

Contributions

Junmin Luo, Jihong Feng contributed to the conception of the review; Linna Wei wrote the manuscript; Liping Liu performed manuscript preparation contributed collection; Zudi Meng, Kai Qi, Xuehan Gao helped perform constructive discussions.

Corresponding author

Correspondence to Junmin Luo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Mauro Teixeira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Liu, L., Meng, Z. et al. Recognition of Mycobacterium tuberculosis by macrophage Toll-like receptor and its role in autophagy. Inflamm. Res. 73, 753–770 (2024). https://doi.org/10.1007/s00011-024-01864-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-024-01864-x

Keywords

Navigation