Skip to main content

Advertisement

Log in

Challenges and opportunities in inflammatory bowel disease: from current therapeutic strategies to organoid-based models

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Inflammatory bowel disease (IBD) is an increasingly prevalent global health concern that has garnered substantial attention. However, the underlying mechanisms are still unclear and the current treatments have significant limitations. Intestinal organoids provide an in vitro model to explore the pathogenesis, test the therapeutic effects, and develop regenerative treatments as well as offer the potential to transform drug discovery of IBD.

Methods

To advance our understanding of the whole story of IBD spanning from the pathogenesis to the current therapeutic strategies and latest advancements, a comprehensive search of major databases including PubMed, Scopus, and Web of Science was conducted to retrieve original articles and reviews related to IBD, organoids, pathogenesis and therapy.

Results

This review deciphers the etiopathogenesis and the current therapeutic approaches in the treatment of IBD. Notably, critical aspects of intestinal organoids in IBD, such as their potential applications, viability, cell renewal ability, and barrier functionality are highlighted. We also discuss the advances, limitations, and prospects of intestinal organoids for precision medicine.

Conclusion

The latest strides made in research about intestinal organoids help elucidate intricate aspects of IBD pathogenesis, and pave the prospective avenues for novel therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

IBD:

Inflammatory bowel disease

UC:

Ulcerative colitis

CD:

Crohn's disease

IEC:

Intestinal epithelial cell

3D:

Three-dimensional

IELs:

Intraepithelial lymphocytes

REF-3-γ:

Regenerating family member 3γ

MUC2:

Mucin 2

TJ:

Tight junction

Gna12:

Guanine nucleotide-binding protein subunit-12

ZO-1:

Zonula occludens-1

Cldn2:

Claudin2

ER:

Endoplasmic reticulum

URP:

Unfolded protein response

STAT3:

Signal transducer and activator of transcription 3

NF-κB:

Nuclear factor κB

ATG16L1:

Autophagy-related 16 like 1

IRGM:

Immune-realted guanosine triphosphatase M protein

DCs:

Dendritic cells

TLR2:

Toll-like receptor 2

ILCs:

Innate lymphoid cells

TNF:

Tumor necrosis factor

IFN:

Interferon

RORC:

RAR-related orphan receptor C

AHR:

Aryl hydrocarbon receptor

MAdCAM-1:

Mucosal addressin cell adhesion molecule-1

Th cells:

T helper cells

Treg:

Regulatory T cells

SCFAs:

Short-chain fatty acids

IL-22BP:

Interleukin-22 binding protein

hIL-22:

Human interleukin-22

HIF-1α:

Hypoxia-inducible factor-1α

DSS:

Dextran sulfate sodium

PHD:

Prolyl hydroxylases

GSDMB:

Gasdermin B

PDGF-A:

Platelet-derived growth factor A

FAK:

Focal adhesion kinase

HA:

Hyaluronan

GAGs:

Glycosaminoglycans

ECM:

Extracellular matrix

MMPs:

Matrix metalloproteinases

JAK:

Janus kinase

PTPN2:

Protein tyrosine phosphatase non-receptortype-2

S1PR:

Sphingosine 1-phosphate receptors

GBP-307:

Guanylate binding protein 307

CCR9:

C–C chemokine receptor 9

rhIL-10:

Recombinant human interleukin-10

TGF-β:

Transforming growth factor β

PDE4:

Phosphodiesterase 4

3′,5′-cAMP:

Cyclic adenosine monophosphate

MSCs:

Mesenchymal stem cells

HSCs:

Hematopoietic stem cells

PEI:

Polyethylenimine

MONs:

Mesoporous organosilica nanoparticles

cfDNA:

Cell-free DNA

ROS:

Reactive oxygen species

TRAF6:

Tumor necrosis factor receptor-associated factor 6

IRAK1:

Interleukin-1 receptor-associated kinase 1

TNBS:

2,4,6-Trinitrobenzene sulfonic acid

LATS1:

Large tumor suppressor kinase 1

BAs:

Bile acids

FMT:

Fecal microbiota transplantation

5-HTP:

5-Hydroxytryptoph

iPSCs:

Induced pluripotent stem cells

ISCs:

Intestinal stem cells

TTC7A:

Tetratricopeptide repeatdomain 7A

SMAD4:

Suppressor of mothers against decapentaplegic homolog 4

MLCK:

Myosin lightchain kinase

PPI:

Proton pump inhibitor

MLC:

Phosphor-myosin light chain

MAPK:

Mitogen-activated protein kinase

CS:

Systemic corticosteroids

ATM:

Ataxia-telangiectasia mutated proteins

YAP1:

Yes-associatedprotein1

SOD3:

Superoxide dismutase 3

MLKL:

Mixed lineage kinase domain-like protein

LRH-1:

Liver receptor homolog 1

NKG2D:

Naturalkiller group2, member D

PBMCs:

Peripheral blood mononuclear cells

TP53:

Tumor protein 53

IGF-1:

Insulin-like growth factor-1

PI3K:

Phosphoinositide 3-kinase protein kinase B

PGE2:

Prostaglandin E2

COX:

Cyclooxygenase

CXCL1:

C-X-C motif chemokine1

EP4:

Prostaglandin E2 receptor 4

ATAC:

Assay of transposase accessible chromatin

TEAD:

Transcriptional enhanced associate domain

LPMCs:

Lamina propria mononuclear cells

UCP4:

Uncoupling protein 4

PBAs:

Primary bile acids

SBAs:

Secondary bile acids

TGR5:

Takeda G protein-coupled receptor 5

I3C:

Indole-3-carbin

References

  1. Collaborators GBDIBD. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5(1):17–30.

    Article  Google Scholar 

  2. Kobayashi T, Siegmund B, Le Berre C, Wei SC, Ferrante M, Shen B, et al. Ulcerative colitis. Nat Rev Dis Primers. 2020;6(1):74.

    Article  PubMed  Google Scholar 

  3. Sandborn WJ, Su C, Sands BE, D’Haens GR, Vermeire S, Schreiber S, et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2017;376(18):1723–36.

    Article  CAS  PubMed  Google Scholar 

  4. Yoo JH, Donowitz M. Intestinal enteroids/organoids: A novel platform for drug discovery in inflammatory bowel diseases. World J Gastroenterol. 2019;25(30):4125–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mehandru S, Colombel JF. The intestinal barrier, an arbitrator turned provocateur in IBD. Nat Rev Gastroenterol Hepatol. 2021;18(2):83–4.

    Article  PubMed  Google Scholar 

  6. Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science. 2011;334(6053):255–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zeissig S, Burgel N, Gunzel D, Richter J, Mankertz J, Wahnschaffe U, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007;56(1):61–72.

    Article  CAS  PubMed  Google Scholar 

  8. Weber CR, Nalle SC, Tretiakova M, Rubin DT, Turner JR. Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab Invest. 2008;88(10):1110–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van Klinken BJ, Van der Wal JW, Einerhand AW, Büller HA, Dekker J. Sulphation and secretion of the predominant secretory human colonic mucin MUC2 in ulcerative colitis. Gut. 1999;44(3):387–93.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Krug SM, Bojarski C, Fromm A, Lee IM, Dames P, Richter JF, et al. Tricellulin is regulated via interleukin-13-receptor α2, affects macromolecule uptake, and is decreased in ulcerative colitis. Mucosal Immunol. 2018;11(2):345–56.

    Article  CAS  PubMed  Google Scholar 

  11. Kaser A, Lee A-H, Franke A, Glickman JN, Zeissig S, Tilg H, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell. 2008;134(5):743–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Willson TA, Jurickova I, Collins M, Denson LA. Deletion of intestinal epithelial cell STAT3 promotes T-lymphocyte STAT3 activation and chronic colitis following acute dextran sodium sulfate injury in mice. Inflamm Bowel Dis. 2013;19(3):512–25.

    Article  PubMed  Google Scholar 

  13. Benjamin JL, Sumpter R, Levine B, Hooper LV. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe. 2013;13(6):723–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hart AL, Al-Hassi HO, Rigby RJ, Bell SJ, Emmanuel AV, Knight SC, et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology. 2005;129(1):50–65.

    Article  CAS  PubMed  Google Scholar 

  16. Bain CC, Mowat AM. Macrophages in intestinal homeostasis and inflammation. Immunol Rev. 2014;260(1):102–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Souza HSP, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol. 2016;13(1):13–27.

    Article  PubMed  Google Scholar 

  18. Qiu J, Guo X, Chen Z-ME, He L, Sonnenberg GF, Artis D, et al. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity. 2013;39(2):386–99.

    Article  CAS  PubMed  Google Scholar 

  19. Qiu J, Heller JJ, Guo X, Chen Z-ME, Fish K, Fu Y-X, et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity. 2012;36(1):92–104.

    Article  CAS  PubMed  Google Scholar 

  20. Bernink JH, Peters CP, Munneke M, te Velde AA, Meijer SL, Weijer K, et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol. 2013;14(3):221–9.

    Article  CAS  PubMed  Google Scholar 

  21. Geremia A, Arancibia-Cárcamo CV, Fleming MPP, Rust N, Singh B, Mortensen NJ, et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med. 2011;208(6):1127–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lamb CA, O’Byrne S, Keir ME, Butcher EC. Gut-selective integrin-targeted therapies for inflammatory bowel disease. J Crohns Colitis. 2018;22(12):S653–68.

    Article  Google Scholar 

  23. Duijvestein M, D’Haens GR. Rational and clinical development of the anti-MAdCAM monoclonal antibody for the treatment of IBD. Expert Opin Biol Ther. 2019;19(4):361–6.

    Article  CAS  PubMed  Google Scholar 

  24. Uhlig HH, Powrie F. Translating immunology into therapeutic concepts for inflammatory bowel disease. Annu Rev Immunol. 2018;36:755–81.

    Article  CAS  PubMed  Google Scholar 

  25. Fantini MC, Rizzo A, Fina D, Caruso R, Sarra M, Stolfi C, et al. Smad7 controls resistance of colitogenic T cells to regulatory T cell-mediated suppression. Gastroenterology. 2009;136(4):1308–16.

    Article  CAS  PubMed  Google Scholar 

  26. Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–87.

    Article  CAS  PubMed  Google Scholar 

  27. Fuss IJ, Neurath M, Boirivant M, Klein JS, de la Motte C, Strong SA, et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol. 1996;157(3):1261–70.

    Article  CAS  PubMed  Google Scholar 

  28. Pascal V, Pozuelo M, Borruel N, Casellas F, Campos D, Santiago A, et al. A microbial signature for Crohn’s disease. Gut. 2017;66(5):813–22.

    Article  CAS  PubMed  Google Scholar 

  29. Palmela C, Chevarin C, Xu Z, Torres J, Sevrin G, Hirten R, et al. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut. 2018;67(3):574–87.

    Article  CAS  PubMed  Google Scholar 

  30. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63(8):1275–83.

    Article  CAS  PubMed  Google Scholar 

  32. Paramsothy S, Kamm MA, Kaakoush NO, Walsh AJ, van den Bogaerde J, Samuel D, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017;389(10075):1218–28.

    Article  PubMed  Google Scholar 

  33. Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, Franchini F, et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity. 2019;50(2):432–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Imai T, Inoue R, Kawada Y, Morita Y, Inatomi O, Nishida A, et al. Characterization of fungal dysbiosis in Japanese patients with inflammatory bowel disease. J Gastroenterol. 2019;54(2):149–59.

    Article  CAS  PubMed  Google Scholar 

  35. Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160(3):447–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dignass AU. Mechanisms and modulation of intestinal epithelial repair. Inflamm Bowel Dis. 2001;7(1):68–77.

    Article  CAS  PubMed  Google Scholar 

  37. Mizoguchi A, Yano A, Himuro H, Ezaki Y, Sadanaga T, Mizoguchi E. Clinical importance of IL-22 cascade in IBD. J Gastroenterol. 2018;53(4):465–74.

    Article  CAS  PubMed  Google Scholar 

  38. Pelczar P, Witkowski M, Perez LG, Kempski J, Hammel AG, Brockmann L, et al. A pathogenic role for T cell-derived IL-22BP in inflammatory bowel disease. Science. 2016;354(6310):358–62.

    Article  CAS  PubMed  Google Scholar 

  39. Zhou C, Li L, Li T, Sun L, Yin J, Guan H, et al. SCFAs induce autophagy in intestinal epithelial cells and relieve colitis by stabilizing HIF-1α. J Mol Med (Berl). 2020;98(8):1189–202.

    Article  CAS  PubMed  Google Scholar 

  40. Danese S, Levesque BG, Feagan BG, Jucov A, Bhandari BR, Pai RK, et al. Randomised clinical trial: a phase 1b study of GB004, an oral HIF-1α stabiliser, for treatment of ulcerative colitis. Aliment Pharmacol Ther. 2022;55(4):401–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rana N, Privitera G, Kondolf HC, Bulek K, Lechuga S, De Salvo C, et al. GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis. Cell. 2022;185(2):283-298.e217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aslam MN, McClintock SD, Attili D, Pandya S, Rehman H, Nadeem DM, et al. Ulcerative colitis-derived colonoid culture: a multi-mineral-approach to improve barrier protein expression. Front Cell Dev Biol. 2020;8:577221.

    Article  PubMed  PubMed Central  Google Scholar 

  43. He C, Deng J, Hu X, Zhou S, Wu J, Xiao D, et al. Vitamin A inhibits the action of LPS on the intestinal epithelial barrier function and tight junction proteins. Food Funct. 2019;10(2):1235–42.

    Article  CAS  PubMed  Google Scholar 

  44. Lin Y, Li B, Yang X, Liu T, Shi T, Deng B, et al. Non-hematopoietic STAT6 induces epithelial tight junction dysfunction and promotes intestinal inflammation and tumorigenesis. Mucosal Immunol. 2019;12(6):1304–15.

    Article  CAS  PubMed  Google Scholar 

  45. Dong L, Xie J, Wang Y, Jiang H, Chen K, Li D, et al. Mannose ameliorates experimental colitis by protecting intestinal barrier integrity. Nat Commun. 2022;13(1):4804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kotla NG, Isa ILM, Rasala S, Demir S, Singh R, Baby BV, et al. Modulation of gut barrier functions in ulcerative colitis by hyaluronic acid system. Adv Sci (Weinh). 2022;9(4):e2103189.

    Article  PubMed  Google Scholar 

  47. Pu Y, Fan X, Zhang Z, Guo Z, Pan Q, Gao W, et al. Harnessing polymer-derived drug delivery systems for combating inflammatory bowel disease. J Control Release. 2023;354:1–18.

    Article  CAS  PubMed  Google Scholar 

  48. Cao SS, Zimmermann EM, Chuang BM, Song B, Nwokoye A, Wilkinson JE, et al. The unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice. Gastroenterology. 2013;144(5):989-1000.e1006.

    Article  CAS  PubMed  Google Scholar 

  49. You YD, Deng WH, Guo WY, Zhao L, Mei FC, Hong YP, et al. 4-Phenylbutyric acid attenuates endoplasmic reticulum stress-mediated intestinal epithelial cell apoptosis in rats with severe acute pancreatitis. Dig Dis Sci. 2019;64(6):1535–47.

    Article  CAS  PubMed  Google Scholar 

  50. Liang X, Xie J, Liu H, Zhao R, Zhang W, Wang H, et al. STIM1 deficiency in intestinal epithelium attenuates colonic inflammation and tumorigenesis by reducing ER stress of goblet cells. Cell Mol Gastroenterol Hepatol. 2022;14(1):193–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sandborn WJ, Bhandari BR, Randall C, Younes ZH, Romanczyk T, Xin Y, et al. Andecaliximab [Anti-matrix metalloproteinase-9] induction therapy for ulcerative colitis: a randomised, double-Blind, placebo-controlled, phase 2/3 study in patients with moderate to severe disease. J Crohns Colitis. 2018;12(9):1021–9.

    PubMed  PubMed Central  Google Scholar 

  52. Schreiber S, Siegel CA, Friedenberg KA, Younes ZH, Seidler U, Bhandari BR, et al. A phase 2, randomized, placebo-controlled study evaluating matrix metalloproteinase-9 inhibitor, Andecaliximab, in patients with moderately to severely active Crohn’s disease. J Crohns Colitis. 2018;12(9):1014–20.

    PubMed  PubMed Central  Google Scholar 

  53. Neurath MF. Current and emerging therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol. 2017;14(5):269–78.

    Article  CAS  PubMed  Google Scholar 

  54. Casanova MJ, Chaparro M, Mínguez M, Ricart E, Taxonera C, García-López S, et al. Effectiveness and safety of the sequential use of a second and third anti-TNF agent in patients with inflammatory bowel disease: results from the eneida registry. Inflamm Bowel Dis. 2020;26(4):606–16.

    PubMed  Google Scholar 

  55. Hedl M, Proctor DD, Abraham C. JAK2 disease-risk variants are gain of function and JAK signaling threshold determines innate receptor-induced proinflammatory cytokine secretion in macrophages. J Immunol. 2016;197(9):3695–704.

    Article  CAS  PubMed  Google Scholar 

  56. Núñez P, Quera R, Yarur AJ. Safety of janus kinase inhibitors in inflammatory bowel diseases. Drugs. 2023;83(4):299–314.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Spalinger MR, Sayoc-Becerra A, Ordookhanian C, Canale V, Santos AN, King SJ, et al. The JAK inhibitor Tofacitinib rescues intestinal barrier defects caused by disrupted epithelial-macrophage interactions. J Crohns Colitis. 2021;15(3):471–84.

    Article  PubMed  Google Scholar 

  58. Deepak P, Alayo QA, Khatiwada A, Lin B, Fenster M, Dimopoulos C, et al. Safety of Tofacitinib in a real-world cohort of patients with ulcerative colitis. Clinical Gastroenterol. 2021;19(8):1592-1601.e1593.

    CAS  Google Scholar 

  59. Burnett Z, Werner BC. Risk factors, management, and prognosis of brachial plexopathy following reverse total shoulder arthroplasty. Orthop Clin North Am. 2022;53(2):215–21.

    Article  PubMed  Google Scholar 

  60. Soler D, Chapman T, Yang LL, Wyant T, Egan R, Fedyk ER. The binding specificity and selective antagonism of vedolizumab, an anti-alpha4beta7 integrin therapeutic antibody in development for inflammatory bowel diseases. J Pharmacol Exp Ther. 2009;330(3):864–75.

    Article  CAS  PubMed  Google Scholar 

  61. Peyrin-Biroulet L, Hart A, Bossuyt P, Long M, Allez M, Juillerat P, et al. Etrolizumab as induction and maintenance therapy for ulcerative colitis in patients previously treated with tumour necrosis factor inhibitors (HICKORY): a phase 3, randomised, controlled trial. Lancet Gastroenterol Hepatol. 2022;7(2):128–40.

    Article  PubMed  Google Scholar 

  62. MacDonald JK, McDonald JW. Natalizumab for induction of remission in Crohn’s disease. Cochrane Database Syst Rev. 2007;1:CD006097.

    Google Scholar 

  63. Sandborn WJ, Feagan BG, Hanauer S, Vermeire S, Ghosh S, Liu WJ, et al. Long-term efficacy and safety of ozanimod in moderately to severely active ulcerative colitis: results from the open-label extension of the randomized, phase 2 TOUCHSTONE study. J Crohns Colitis. 2021;15(7):1120–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sandborn WJ, Peyrin-Biroulet L, Zhang J, Chiorean M, Vermeire S, Lee SD, et al. Efficacy and safety of etrasimod in a phase 2 randomized trial of patients with ulcerative colitis. Gastroenterology. 2020;158(3):550–61.

    Article  CAS  PubMed  Google Scholar 

  65. Correction for Yu et al (2022) Structural insights into sphingosine-1-phosphate receptor activation. Proc Natl Acad Sci USA 119(34): e2209949119

  66. Keshav S, Vaňásek T, Niv Y, Petryka R, Howaldt S, Bafutto M, et al. A randomized controlled trial of the efficacy and safety of CCX282-B, an orally-administered blocker of chemokine receptor CCR9, for patients with Crohn’s disease. PLoS ONE. 2013;8(3):e60094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Feagan BG, Sandborn WJ, D’Haens G, Lee SD, Allez M, Fedorak RN, et al. Randomised clinical trial: vercirnon, an oral CCR9 antagonist, vs. placebo as induction therapy in active Crohn’s disease. Aliment Pharmacol Ther. 2015;42(10):1170–81.

    Article  CAS  PubMed  Google Scholar 

  68. Atreya R, Mudter J, Finotto S, Müllberg J, Jostock T, Wirtz S, et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat Med. 2000;6(5):583–8.

    Article  CAS  PubMed  Google Scholar 

  69. Danese S, Vermeire S, Hellstern P, Panaccione R, Rogler G, Fraser G, et al. Randomised trial and open-label extension study of an anti-interleukin-6 antibody in Crohn’s disease (ANDANTE I and II). Gut. 2019;68(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  70. Schreiber S, Aden K, Bernardes JP, Conrad C, Tran F, Höper H, et al. Therapeutic interleukin-6 trans-signaling inhibition by Olamkicept (sgp130Fc) in patients with active inflammatory bowel disease. Gastroenterology. 2021;160(7):2354-2366.e2311.

    Article  CAS  PubMed  Google Scholar 

  71. Schreiber S, Fedorak RN, Nielsen OH, Wild G, Williams CN, Nikolaus S, et al. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology. 2000;119(6):1461–72.

    Article  CAS  PubMed  Google Scholar 

  72. Madsen KL, Doyle JS, Jewell LD, Tavernini MM, Fedorak RN. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology. 1999;116(5):1107–14.

    Article  CAS  PubMed  Google Scholar 

  73. Clough JN, Omer OS, Tasker S, Lord GM, Irving PM. Regulatory T-cell therapy in Crohn’s disease: challenges and advances. Gut. 2020;69(5):942–52.

    Article  CAS  PubMed  Google Scholar 

  74. Desreumaux P, Foussat A, Allez M, Beaugerie L, Hébuterne X, Bouhnik Y, et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn’s disease. Gastroenterology. 2012;143(5):1207-1217.e1202.

    Article  CAS  PubMed  Google Scholar 

  75. Voskens CJ, Stoica D, Roessner S, Vitali F, Zundler S, Rosenberg M, et al. Safety and tolerability of a single infusion of autologous ex vivo expanded regulatory T cells in adults with ulcerative colitis (ER-TREG 01): protocol of a phase 1, open-label, fast-track dose-escalation clinical trial. BMJ Open. 2021;11(12):e049208.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Danese S, Neurath MF, Kopoń A, Zakko SF, Simmons TC, Fogel R, et al. Effects of Apremilast, an oral inhibitor of phosphodiesterase 4, in a randomized trial of patients with active ulcerative colitis. Clin Gastroenterol Hepatol. 2020;18(11):2526-2534.e2529.

    Article  CAS  PubMed  Google Scholar 

  77. Liu H, Wang Q, Huang Y, Deng J, Xie X, Zhu J, et al. Discovery of novel PDE4 inhibitors targeting the M-pocket from natural mangostanin with improved safety for the treatment of inflammatory bowel diseases. Eur J Med Chem. 2022;242:114631.

    Article  CAS  PubMed  Google Scholar 

  78. Barnhoorn MC, Wasser M, Roelofs H, Maljaars PWJ, Molendijk I, Bonsing BA, et al. Long-term evaluation of allogeneic bone marrow-derived mesenchymal stromal cell therapy for Crohn’s disease perianal fistulas. J Crohns Colitis. 2020;14(1):64–70.

    Article  PubMed  Google Scholar 

  79. Brierley CK, Castilla-Llorente C, Labopin M, Badoglio M, Rovira M, Ricart E, et al. Autologous haematopoietic stem cell transplantation for Crohn’s disease: a retrospective survey of long-term outcomes from the European society for blood and marrow transplantation. J Crohns Colitis. 2018;12(9):1097–103.

    PubMed  PubMed Central  Google Scholar 

  80. Chen J, Huang J, Shi J, Li M, Zhao E, Li G, et al. Nestin+ Peyer’s patch resident MSCs enhance healing of inflammatory bowel disease through IL-22-mediated intestinal epithelial repair. Cell Prolif. 2023;56(2):e13363.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang Y, Wang T, Sun M, Song Y, Huang X, Zhang S, et al. Advanced nanomedicine: redefining therapeutic paradigms for inflammatory bowel disease. Adv Healthc Mater. 2023;12:e2300069.

    Article  PubMed  Google Scholar 

  82. Shi C, Dawulieti J, Shi F, Yang C, Qin Q, Shi T, et al. A nanoparticulate dual scavenger for targeted therapy of inflammatory bowel disease. Sci Adv. 2022;8(4):2372.

    Article  Google Scholar 

  83. Wang C, Xu M, Fan Q, Li C, Zhou X. Therapeutic potential of exosome-based personalized delivery platform in chronic inflammatory diseases. Asian J Pharm Sci. 2023;18(1):100772.

    Article  PubMed  Google Scholar 

  84. Wu H, Fan H, Shou Z, Xu M, Chen Q, Ai C, et al. Extracellular vesicles containing miR-146a attenuate experimental colitis by targeting TRAF6 and IRAK1. Int Immunopharmacol. 2019;68:204–12.

    Article  CAS  PubMed  Google Scholar 

  85. Deng F, Yan J, Lu J, Luo M, Xia P, Liu S, et al. M2 macrophage-derived exosomal miR-590-3p attenuates DSS-induced mucosal damage and promotes epithelial repair via the LATS1/YAP/ β-Catenin signalling axis. J Crohns Colitis. 2021;15(4):665–77.

    Article  PubMed  Google Scholar 

  86. Shan Y, Lee M, Chang EB. The gut microbiome and inflammatory bowel diseases. Annu Rev Med. 2022;73:455–68.

    Article  CAS  PubMed  Google Scholar 

  87. Martyniak A, Medyńska-Przęczek A, Wędrychowicz A, Skoczeń S, Tomasik PJ. Prebiotics, probiotics, synbiotics, paraprobiotics and postbiotic compounds in IBD. Biomolecules. 2021;11:12.

    Article  Google Scholar 

  88. Fedorak RN, Feagan BG, Hotte N, Leddin D, Dieleman LA, Petrunia DM, et al. The probiotic VSL#3 has anti-inflammatory effects and could reduce endoscopic recurrence after surgery for Crohn’s disease. Clin Gastroenterol Hepatol. 2015;13(5):928-935.e922.

    Article  CAS  PubMed  Google Scholar 

  89. Furrie E, Macfarlane S, Kennedy A, Cummings JH, Walsh SV, O’Neil DA, et al. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut. 2005;54(2):242–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ooijevaar RE, Terveer EM, Verspaget HW, Kuijper EJ, Keller JJ. Clinical application and potential of fecal microbiota transplantation. Annu Rev Med. 2019;70:335–51.

    Article  CAS  PubMed  Google Scholar 

  91. Moayyedi P, Surette MG, Kim PT, Libertucci J, Wolfe M, Onischi C, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology. 2015;149(1):102-109 e106.

    Article  PubMed  Google Scholar 

  92. Kump PK, Grochenig HP, Lackner S, Trajanoski S, Reicht G, Hoffmann KM, et al. Alteration of intestinal dysbiosis by fecal microbiota transplantation does not induce remission in patients with chronic active ulcerative colitis. Inflamm Bowel Dis. 2013;19(10):2155–65.

    Article  PubMed  Google Scholar 

  93. Sokol H, Landman C, Seksik P, Berard L, Montil M, Nion-Larmurier I, et al. Fecal microbiota transplantation to maintain remission in Crohn’s disease: a pilot randomized controlled study. Microbiome. 2020;8(1):12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569(7758):655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cai J, Sun L, Gonzalez FJ. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe. 2022;30(3):289–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen L, Jiao T, Liu W, Luo Y, Wang J, Guo X, et al. Hepatic cytochrome P450 8B1 and cholic acid potentiate intestinal epithelial injury in colitis by suppressing intestinal stem cell renewal. Cell Stem Cell. 2022;29(9):1366–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nikolaus S, Schulte B, Al-Massad N, Thieme F, Schulte DM, Bethge J, et al. Increased tryptophan metabolism is associated with activity of inflammatory bowel diseases. Gastroenterology. 2017;153(6):1504-1516.e1502.

    Article  CAS  PubMed  Google Scholar 

  99. Truyens M, Lobatón T, Ferrante M, Bossuyt P, Vermeire S, Pouillon L, et al. Effect of 5-Hydroxytryptophan on fatigue in quiescent inflammatory bowel disease: a randomized controlled trial. Gastroenterology. 2022;163(5):1294-1305.e1293.

    Article  CAS  PubMed  Google Scholar 

  100. Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet. 2018;19(11):671–87.

    Article  CAS  PubMed  Google Scholar 

  101. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–5.

    Article  CAS  PubMed  Google Scholar 

  102. Dedhia PH, Bertaux-Skeirik N, Zavros Y, Spence JR. Organoid models of human gastrointestinal development and disease. Gastroenterology. 2016;150(5):1098–112.

    Article  PubMed  Google Scholar 

  103. Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 2011;470(7332):105–9.

    Article  PubMed  Google Scholar 

  104. Kim MB, Hwangbo S, Jang S, Jo YK. Bioengineered Co-culture of organoids to recapitulate host–microbe interactions. Mater Today Bio. 2022;16:100345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141(5):1762–72.

    Article  CAS  PubMed  Google Scholar 

  106. Noben M, Verstockt B, de Bruyn M, Hendriks N, Van Assche G, Vermeire S, et al. Epithelial organoid cultures from patients with ulcerative colitis and Crohn’s disease: a truly long-term model to study the molecular basis for inflammatory bowel disease? Gut. 2017;66(12):2193–5.

    Article  CAS  PubMed  Google Scholar 

  107. Howell KJ, Kraiczy J, Nayak KM, Gasparetto M, Ross A, Lee C, et al. DNA methylation and transcription patterns in intestinal epithelial cells from pediatric patients with inflammatory bowel diseases differentiate disease subtypes and associate with outcome. Gastroenterology. 2018;154(3):585–98.

    Article  CAS  PubMed  Google Scholar 

  108. Boye TL, Steenholdt C, Jensen KB, Nielsen OH. Molecular manipulations and intestinal stem cell-derived organoids in inflammatory bowel disease. Stem Cells. 2022;40(5):447–57.

    Article  PubMed  Google Scholar 

  109. Stewart AS, Schaaf CR, Luff JA, Freund JM, Becker TC, Tufts SR, et al. HOPX(+) injury-resistant intestinal stem cells drive epithelial recovery after severe intestinal ischemia. Am J Physiol Gastrointest Liver Physiol. 2021;321(5):G588–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Al-Lamki RS, Bradley JR, Pober JS. Human organ culture: updating the approach to bridge the gap from in vitro to in vivo in inflammation, cancer, and stem cell biology. Front Med (Lausanne). 2017;4:148.

    Article  PubMed  Google Scholar 

  111. Kozuka K, He Y, Koo-McCoy S, Kumaraswamy P, Nie B, Shaw K, et al. Development and characterization of a human and mouse intestinal epithelial cell monolayer platform. Stem Cell Reports. 2017;9(6):1976–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jardine S, Anderson S, Babcock S, Leung G, Pan J, Dhingani N, et al. Drug screen identifies leflunomide for treatment of inflammatory bowel disease caused by TTC7A deficiency. Gastroenterology. 2020;158(4):1000–15.

    Article  CAS  PubMed  Google Scholar 

  113. Buckley A, Turner JR. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb Perspect Biol. 2018;10:1.

    Article  Google Scholar 

  114. Xu P, Elizalde M, Masclee A, Pierik M, Jonkers D. Corticosteroid enhances epithelial barrier function in intestinal organoids derived from patients with Crohn’s disease. J Mol Med (Berl). 2021;99(6):805–15.

    Article  CAS  PubMed  Google Scholar 

  115. Kim MR, Cho SY, Lee HJ, Kim JY, Nguyen UTT, Ha NM, et al. Schisandrin C improves leaky gut conditions in intestinal cell monolayer, organoid, and nematode models by increasing tight junction protein expression. Phytomedicine. 2022;103:154209.

    Article  CAS  PubMed  Google Scholar 

  116. Marincola Smith P, Choksi YA, Markham NO, Hanna DN, Zi J, Weaver CJ, et al. Colon epithelial cell TGFβ signaling modulates the expression of tight junction proteins and barrier function in mice. Am J Physiol Gastrointest Liver Physiol. 2021;320(6):G936-g957.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Martínez-Sánchez LDC, Ngo PA, Pradhan R, Becker LS, Boehringer D, Soteriou D, et al. Epithelial RAC1-dependent cytoskeleton dynamics controls cell mechanics, cell shedding and barrier integrity in intestinal inflammation. Gut. 2023;72(2):275–94.

    Article  PubMed  Google Scholar 

  118. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9(11):799–809.

    Article  CAS  PubMed  Google Scholar 

  119. Nighot M, Liao PL, Morris N, McCarthy D, Dharmaprakash V, Khan IU, et al. Long term use of proton pump inhibitor disrupts intestinal tight junction barrier and exaggerates experimental colitis. J Crohns Colitis. 2022. https://doi.org/10.1093/ecco-jcc/jjac168.

    Article  PubMed Central  Google Scholar 

  120. Shah R, Richardson P, Yu H, Kramer J, Hou JK. Gastric acid suppression is associated with an increased risk of adverse outcomes in inflammatory bowel disease. Digestion. 2017;95(3):188–93.

    Article  CAS  PubMed  Google Scholar 

  121. Dubois-Camacho K, Ottum PA, Franco-Munoz D, De la Fuente M, Torres-Riquelme A, Diaz-Jimenez D, et al. Glucocorticosteroid therapy in inflammatory bowel diseases: from clinical practice to molecular biology. World J Gastroenterol. 2017;23(36):6628–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Reyes EA, Castillo-Azofeifa D, Rispal J, Wald T, Zwick RK, Palikuqi B, et al. Epithelial TNF controls cell differentiation and CFTR activity to maintain intestinal mucin homeostasis. J Clin Invest. 2023. https://doi.org/10.1172/JCI163591.

    Article  PubMed  PubMed Central  Google Scholar 

  123. d’Aldebert E, Quaranta M, Sebert M, Bonnet D, Kirzin S, Portier G, et al. Characterization of human colon organoids from inflammatory bowel disease patients. Front Cell Dev Biol. 2020;8:363.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Lee C, Hong SN, Kim ER, Chang DK, Kim YH. Epithelial regeneration ability of Crohn’s disease assessed using patient-derived intestinal organoids. Int J Mol Sci. 2021;22(11):6013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Qian J, Zhao W, Miao X, Li L, Zhang D. Sam68 modulates apoptosis of intestinal epithelial cells via mediating NF-kappaB activation in ulcerative colitis. Mol Immunol. 2016;75:48–59.

    Article  CAS  PubMed  Google Scholar 

  126. Goodman WA, Basavarajappa SC, Liu AR, Rodriguez FDS, Mathes T, Ramakrishnan P. Sam68 contributes to intestinal inflammation in experimental and human colitis. Cell Mol Life Sci. 2021;78(23):7635–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tak LJ, Kim HY, Ham WK, Agrahari G, Seo Y, Yang JW, et al. Superoxide dismutase 3-transduced mesenchymal stem cells preserve epithelial tight junction barrier in murine colitis and attenuate inflammatory damage in epithelial organoids. Int J Mol Sci. 2021;22(12):6431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee C, An M, Joung JG, Park WY, Chang DK, Kim YH, et al. TNFα Induces LGR5+ stem cell dysfunction in patients with Crohn’s disease. Cell Mol Gastroenterol Hepatol. 2022;13(3):789–808.

    Article  CAS  PubMed  Google Scholar 

  129. Bayrer JR, Wang H, Nattiv R, Suzawa M, Escusa HS, Fletterick RJ, et al. LRH-1 mitigates intestinal inflammatory disease by maintaining epithelial homeostasis and cell survival. Nat Commun. 2018;9(1):4055.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Hammoudi N, Hamoudi S, Bonnereau J, Bottois H, Pérez K, Bezault M, et al. Autologous organoid co-culture model reveals T cell-driven epithelial cell death in Crohn’s Disease. Front Immunol. 2022;13:1008456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Angus HC, Urbano PC, Laws GA, Fan S, Gadeock S, Schultz M, et al. An autologous colonic organoid-derived monolayer model to study immune: bacterial interactions in Crohn’s disease patients. Clin Transl Immunol. 2022;11(8):e1407.

    Article  CAS  Google Scholar 

  132. Watanabe S, Hibiya S, Katsukura N, Kitagawa S, Sato A, Okamoto R, et al. Importance of telomere shortening in the pathogenesis of ulcerative colitis: a new treatment from the aspect of telomeres in intestinal epithelial cells. J Crohns Colitis. 2022;16(1):109–21.

    Article  PubMed  Google Scholar 

  133. Chakravarti D, Lee R, Multani AS, Santoni A, Keith Z, Hsu WH, et al. Telomere dysfunction instigates inflammation in inflammatory bowel disease. Proc Natl Acad Sci U S A. 2021;118(29):e2024853118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chakravarti D, Hu B, Mao X, Rashid A, Li J, Li J, et al. Telomere dysfunction activates YAP1 to drive tissue inflammation. Nat Commun. 2020;11(1):4766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yu H, Yang X, Xiao X, Xu M, Yang Y, Xue C, et al. Human adipose mesenchymal stem cell-derived exosomes protect mice from DSS-induced inflammatory bowel disease by promoting intestinal-stem-cell and epithelial regeneration. Aging Dis. 2021;12(6):1423–37.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Liang X, Li C, Song J, Liu A, Wang C, Wang W, et al. HucMSC-Exo promote mucosal healing in experimental colitis by accelerating intestinal stem cells and epithelium regeneration via Wnt signaling pathway. Int J Nanomed. 2023;18:2799–818.

    Article  CAS  Google Scholar 

  137. Xu J, Wang X, Chen J, Chen S, Li Z, Liu H, et al. Embryonic stem cell-derived mesenchymal stem cells promote colon epithelial integrity and regeneration by elevating circulating IGF-1 in colitis mice. Theranostics. 2020;10(26):12204–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Carulli AJ, Keeley TM, Demitrack ES, Chung J, Maillard I, Samuelson LC. Notch receptor regulation of intestinal stem cell homeostasis and crypt regeneration. Dev Biol. 2015;402(1):98–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Na YR, Jung D, Stakenborg M, Jang H, Gu GJ, Jeong MR, et al. Prostaglandin E(2) receptor PTGER4-expressing macrophages promote intestinal epithelial barrier regeneration upon inflammation. Gut. 2021;70(12):2249–60.

    Article  CAS  PubMed  Google Scholar 

  140. Wang Y, Chiang IL, Ohara TE, Fujii S, Cheng J, Muegge BD, et al. Long-term culture captures injury-repair cycles of colonic stem cells. Cell. 2019;179:5:1144–1159 e1115.

  141. Kobayashi S, Ogasawara N, Watanabe S, Yoneyama Y, Kirino S, Hiraguri Y, et al. Collagen type I-mediated mechanotransduction controls epithelial cell fate conversion during intestinal inflammation. Inflamm Regen. 2022;42(1):49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Powell N, Pantazi E, Pavlidis P, Tsakmaki A, Li K, Yang F, et al. Interleukin-22 orchestrates a pathological endoplasmic reticulum stress response transcriptional programme in colonic epithelial cells. Gut. 2020;69(3):578–90.

    Article  CAS  PubMed  Google Scholar 

  143. Schmechel S, Konrad A, Diegelmann J, Glas J, Wetzke M, Paschos E, et al. Linking genetic susceptibility to Crohn’s disease with Th17 cell function: IL-22 serum levels are increased in Crohn’s disease and correlate with disease activity and IL23R genotype status. Inflamm Bowel Dis. 2008;14(2):204–12.

    Article  PubMed  Google Scholar 

  144. He GW, Lin L, DeMartino J, Zheng X, Staliarova N, Dayton T, et al. Optimized human intestinal organoid model reveals interleukin-22-dependency of paneth cell formation. Cell Stem Cell. 2022;29(9):1333-1345 e1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tan C, Hong G, Wang Z, Duan C, Hou L, Wu J, et al. Promoting effect of L-Fucose on the regeneration of intestinal stem cells through AHR/IL-22 pathway of intestinal lamina propria monocytes. Nutrients. 2022;14(22):4789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Deleu S, Arnauts K, Deprez L, Machiels K, Ferrante M, Huys GRB, et al. High acetate concentration protects intestinal barrier and exerts anti-inflammatory effects in organoid-derived epithelial monolayer cultures from patients with ulcerative colitis. Int J Mol Sci. 2023;24(1):768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ye J, Haskey N, Dadlani H, Zubaidi H, Barnett JA, Ghosh S, et al. Deletion of mucin 2 induces colitis with concomitant metabolic abnormalities in mice. Am J Physiol Gastrointest Liver Physiol. 2021;320(5):G791–803.

    Article  CAS  PubMed  Google Scholar 

  148. Jurickova I, Bonkowski E, Angerman E, Novak E, Huron A, Akers G, et al. Eicosatetraynoic acid and butyrate regulate human intestinal organoid mitochondrial and extracellular matrix pathways implicated in Crohn’s disease strictures. Inflamm Bowel Dis. 2022;28(7):988–1003.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Liu D, Chan SL, de Souza-Pinto NC, Slevin JR, Wersto RP, Zhan M, et al. Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress. Neuromolecular Med. 2006;8(3):389–414.

    Article  CAS  PubMed  Google Scholar 

  150. Gallagher K, Catesson A, Griffin JL, Holmes E, Williams HRT. Metabolomic analysis in inflammatory bowel disease: a systematic review. J Crohns Colitis. 2021;15(5):813–26.

    Article  PubMed  Google Scholar 

  151. Sorrentino G, Perino A, Yildiz E, El Alam G, Bou Sleiman M, Gioiello A, et al. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration. Gastroenterology. 2020;159(3):956-968 e958.

    Article  CAS  PubMed  Google Scholar 

  152. Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(4):223–37.

    Article  PubMed  Google Scholar 

  153. Park JH, Lee JM, Lee EJ, Hwang WB, Kim DJ. Indole-3-carbinol promotes goblet-cell differentiation regulating Wnt and Notch signaling pathways AhR-dependently. Mol Cells. 2018;41(4):290–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science. 2001;294(5549):2155–8.

    Article  CAS  PubMed  Google Scholar 

  155. Giri R, Hoedt EC, Khushi S, Salim AA, Bergot AS, Schreiber V, et al. Secreted NF-κB suppressive microbial metabolites modulate gut inflammation. Cell Rep. 2022;39(2):110646.

    Article  CAS  PubMed  Google Scholar 

  156. Quevrain E, Maubert MA, Michon C, Chain F, Marquant R, Tailhades J, et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut. 2016;65(3):415–25.

    Article  CAS  PubMed  Google Scholar 

  157. Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med. 2012;18(4):618–23.

    Article  CAS  PubMed  Google Scholar 

  158. Morris SA, Cahan P, Li H, Zhao AM, San Roman AK, Shivdasani RA, et al. Dissecting engineered cell types and enhancing cell fate conversion via Cell Net. Cell. 2014;158(4):889–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Fukuda M, Mizutani T, Mochizuki W, Matsumoto T, Nozaki K, Sakamaki Y, et al. Small intestinal stem cell identity is maintained with functional Paneth cells in heterotopically grafted epithelium onto the colon. Genes Dev. 2014;28(16):1752–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Watanabe S, Kobayashi S, Ogasawara N, Okamoto R, Nakamura T, Watanabe M, et al. Transplantation of intestinal organoids into a mouse model of colitis. Nat Protoc. 2022;17(3):649–71.

    Article  CAS  PubMed  Google Scholar 

  161. Valatas V, Bamias G, Kolios G. Experimental colitis models: Insights into the pathogenesis of inflammatory bowel disease and translational issues. Eur J Pharmacol. 2015;759:253–64.

    Article  CAS  PubMed  Google Scholar 

  162. Voskens C, Stoica D, Rosenberg M, Vitali F, Zundler S, Ganslmayer M, et al. Autologous regulatory T-cell transfer in refractory ulcerative colitis with concomitant primary sclerosing cholangitis. Gut. 2023;72(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  163. Sands BE, Peyrin-Biroulet L, Kierkus J, Higgins PDR, Fischer M, Jairath V, et al. Efficacy and safety of Mirikizumab in a randomized phase 2 study of patients with Crohn’s disease. Gastroenterology. 2022;162(2):495–508.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Science and Technology Plan Project of Wenzhou, China (Grant Numbers Y20220045, Y20220389), Zhejiang Province Natural Science Foundation of China (Grant Number LTGY23H100001), National Natural Science Foundation of China (Grant Number 81901660), and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province (2022E10022).

Author information

Authors and Affiliations

Authors

Contributions

CH and SG conceived this Review. LK, SH, SC, and AZ searched the literature and drafted the manuscript. SC and SH completed the drawing of the Figures. SG edited the manuscript, JY and CH revised the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Sheng Gao, Jianzhong Ye or Chunyan Hua.

Ethics declarations

Conflict of interest

The authors declare there are no competing interests.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Chen, S., Huang, S. et al. Challenges and opportunities in inflammatory bowel disease: from current therapeutic strategies to organoid-based models. Inflamm. Res. 73, 541–562 (2024). https://doi.org/10.1007/s00011-024-01854-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-024-01854-z

Keywords

Navigation