Skip to main content

Advertisement

Log in

Increased sympathetic outflow induced by emotional stress aggravates myocardial ischemia–reperfusion injury via activation of TLR7/MyD88/IRF5 signaling pathway

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background and objective

Emotional stress substantially increases the risk of ischemic cardiovascular diseases. Previous study indicates that sympathetic outflow is increased under emotional stress. We aim to investigate the role of increased sympathetic outflow induced by emotional stress in myocardial ischemia–reperfusion (I/R) injury, and explore the underlying mechanisms.

Methods and Results

We used Designer Receptors Exclusively Activated by Designer Drugs technique to activate the ventromedial hypothalamus (VMH), a critical emotion-related nucleus. The results revealed that emotional stress stimulated by VMH activation increased sympathetic outflow, enhanced blood pressure, aggravated myocardial I/R injury, and exacerbated infarct size. The RNA-seq and molecular detection demonstrated that toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88), interferon regulatory factor 5 (IRF5), and downstream inflammatory markers in cardiomyocytes were significantly upregulated. Emotional stress-induced sympathetic outflow further exacerbated the disorder of the TLR7/MyD88/IRF5 inflammatory signaling pathway. While inhibition of the signaling pathway partially alleviated myocardial I/R injury aggravated by emotional stress-induced sympathetic outflow.

Conclusion

Increased sympathetic outflow induced by emotional stress activates TLR7/MyD88/IRF5 signaling pathway, ultimately aggravating I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during this study are available from the corresponding author upon reasonable request. Requests to access these datasets should be directed to Prof. Hong Jiang, hong-jiang@whu.edu.cn.

Abbreviations

ANS:

Autonomic nervous system

BP:

Blood pressure

CAT:

Catalase

CNO:

Clozapine-N-oxide

c-TnT:

Cardiac troponin T

CVDs:

Cardiovascular diseases

ECG:

Electrocardiogram

ERP:

Effective refractory period

FPKM:

Fragments per kilobase million

GSH:

Glutathione

HF:

High frequency

HR:

Heart rate

HRV:

Heart rate variability

I/R:

Ischemia/reperfusion

IRF5:

Interferon regulatory factor 5

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LDH:

Lactate dehydrogenase

LF:

Low frequency

LV:

Left ventricle

MDA:

Malondialdehyde

MyD88:

Myeloid differentiation factor 88

NE:

Norepinephrine

PRV-RFP:

Pseudo-rabies virus carrying red fluorescent protein

PVN:

Paraventricular nucleus

qRT-PCR:

Quantitative real-time PCR

RNA-seq:

RNA sequencing

SCG:

Superior cervical ganglion

SNS:

Sympathetic nervous system

SOD:

Superoxide dismutase

TLR7:

Toll-like receptor 7

VMH:

Ventromedial hypothalamus

References

  1. Johnson AK, Hayes SN, Sawchuk C, Johnson MP, Best PJ, Gulati R, Tweet MS. Analysis of posttraumatic stress disorder, depression, anxiety, and resiliency within the unique population of spontaneous coronary artery dissection survivors. J Am Heart Assoc. 2020;9:e014372.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mostofsky E, Penner EA, Mittleman MA. Outbursts of anger as a trigger of acute cardiovascular events: a systematic review and meta-analysis. Eur Heart J. 2014;35:1404–10. https://doi.org/10.1093/eurheartj/ehu033.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shah AS, Alonso A, Whitsel EA, Soliman EZ, Vaccarino V, Shah AJ. Association of psychosocial factors with short-term resting heart rate variability: the atherosclerosis risk in communities study. J Am Heart Assoc. 2021;10:e017172.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gustad LT, Laugsand LE, Janszky I, Dalen H, Bjerkeset O. Symptoms of anxiety and depression and risk of heart failure: the HUNT Study. Eur J Heart Fail. 2014;16:861–70. https://doi.org/10.1002/ejhf.133.

    Article  PubMed  Google Scholar 

  5. Oka T. Shitsu-taikan-sho (alexisomia): a historical review and its clinical importance. Biopsychosoc Med. 2020;14:23. https://doi.org/10.1186/s13030-020-00193-9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Falkner AL, Grosenick L, Davidson TJ, Deisseroth K, Lin D. Hypothalamic control of male aggression-seeking behavior. Nat Neurosci. 2016;19:596–604. https://doi.org/10.1038/nn.4264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mendes-Gomes J, Motta SC, Passoni Bindi R, de Oliveira AR, Ullah F, Baldo MVC, Coimbra NC, Canteras NS, Blanchard DC. Defensive behaviors and brain regional activation changes in rats confronting a snake. Behav Brain Res. 2020;381:112469.

    Article  PubMed  Google Scholar 

  8. Viskaitis P, Irvine EE, Smith MA, Choudhury AI, Alvarez-Curto E, Glegola JA, Hardy DG, Pedroni SMA, Paiva Pessoa MR, Fernando ABP, et al. Modulation of SF1 Neuron Activity Coordinately Regulates Both Feeding Behavior and Associated Emotional States. Cell Rep. 2017;21:3559–72. https://doi.org/10.1016/j.celrep.2017.11.089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bachman SL, Nashiro K, Yoo H, Wang D, Thayer JF, Mather M. Associations between locus coeruleus MRI contrast and physiological responses to acute stress in younger and older adults. Brain Res. 2022;1796:148070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kataoka N, Hioki H, Kaneko T, Nakamura K. Psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia. Cell Metab. 2014;20:346–58. https://doi.org/10.1016/j.cmet.2014.05.018.

    Article  CAS  PubMed  Google Scholar 

  11. James C, Macefield VG, Henderson LA. Real-time imaging of cortical and subcortical control of muscle sympathetic nerve activity in awake human subjects. Neuroimage. 2013;70:59–65. https://doi.org/10.1016/j.neuroimage.2012.12.047.

    Article  PubMed  Google Scholar 

  12. Suzuki Y, Shimizu H, Ishizuka N, Kubota N, Kubota T, Senoo A, Kageyama H, Osaka T, Hirako S, Kim HJ, et al. Vagal hyperactivity due to ventromedial hypothalamic lesions increases adiponectin production and release. Diabetes. 2014;63:1637–48. https://doi.org/10.2337/db13-0636.

    Article  CAS  PubMed  Google Scholar 

  13. Meng G, Zhou X, Wang M, Zhou L, Wang Z, Wang M, Deng J, Wang Y, Zhou Z, Zhang Y, et al. Gut microbe-derived metabolite trimethylamine N-oxide activates the cardiac autonomic nervous system and facilitates ischemia-induced ventricular arrhythmia via two different pathways. EBioMedicine. 2019. https://doi.org/10.1016/j.ebiom.2019.03.066.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yu L, Zhou L, Cao G, Po SS, Huang B, Zhou X, Wang M, Yuan S, Wang Z, Wang S, et al. Optogenetic modulation of cardiac sympathetic nerve activity to prevent ventricular arrhythmias. J Am Coll Cardiol. 2017;70:2778–90. https://doi.org/10.1016/j.jacc.2017.09.1107.

    Article  PubMed  Google Scholar 

  15. Lai Y, Zhou X, Guo F, Jin X, Meng G, Zhou L, Chen H, Liu Z, Yu L, Jiang H. Non-invasive transcutaneous vagal nerve stimulation improves myocardial performance in doxorubicin-induced cardiotoxicity. Cardiovasc Res. 2021. https://doi.org/10.1093/cvr/cvab209.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Polhemus DJ, Gao J, Scarborough AL, Trivedi R, McDonough KH, Goodchild TT, Smart F, Kapusta DR, Lefer DJ. Radiofrequency Renal Denervation Protects the Ischemic Heart via Inhibition of GRK2 and Increased Nitric Oxide Signaling. Circ Res. 2016;119:470–80. https://doi.org/10.1161/CIRCRESAHA.115.308278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dias DA, Silva VJ, Tobaldini E, Rocchetti M, Wu MA, Malfatto G, Montano N, Zaza A. Modulation of sympathetic activity and heart rate variability by ivabradine. Cardiovasc Res. 2015;108:31–8.

    Article  Google Scholar 

  18. Yu L, Meng G, Huang B, Zhou X, Stavrakis S, Wang M, Li X, Zhou L, Wang Y, Wang M, et al. A potential relationship between gut microbes and atrial fibrillation: Trimethylamine N-oxide, a gut microbe-derived metabolite, facilitates the progression of atrial fibrillation. Int J Cardiol. 2018;255:92–8. https://doi.org/10.1016/j.ijcard.2017.11.071.

    Article  PubMed  Google Scholar 

  19. Li Z, Li Y, He Z, Li Z, Xu W, Xiang H. The preventive effect of cardiac sympathetic denervation induced by 6-OHDA on myocardial ischemia-reperfusion injury: the changes of lncRNA/circRNAs-miRNA-mRNA network of the upper thoracic spinal cord in rats. Oxid Med Cell Longev. 2021;2021:2492286. https://doi.org/10.1155/2021/2492286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barth AL, Gerkin RC, Dean KL. Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse. J Neurosci. 2004;24:6466–75. https://doi.org/10.1523/JNEUROSCI.4737-03.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 2015;6:524–51. https://doi.org/10.1016/j.redox.2015.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T, Kano S, Honda K, Ohba Y, Mak TW, et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature. 2005;434:243–9. https://doi.org/10.1038/nature03308.

    Article  CAS  PubMed  Google Scholar 

  23. Sakurai K, Zhao S, Takatoh J, Rodriguez E, Lu J, Leavitt AD, Fu M, Han BX, Wang F. Capturing and Manipulating Activated Neuronal Ensembles with CANE Delineates a Hypothalamic Social-Fear Circuit. Neuron. 2016;92:739–53. https://doi.org/10.1016/j.neuron.2016.10.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shao J, Gao DS, Liu YH, Chen SP, Liu N, Zhang L, Zhou XY, Xiao Q, Wang LP, Hu HL, et al. Cav31-driven bursting firing in ventromedial hypothalamic neurons exerts dual control of anxiety-like behavior and energy expenditure. Mol Psychiatry. 2022. https://doi.org/10.1038/s41380-022-01513-x.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jia F, Li L, Liu H, Lv P, Shi X, Wu Y, Ling C, Xu F. Development of a rabies virus-based retrograde tracer with high trans-monosynaptic efficiency by reshuffling glycoprotein. Mol Brain. 2021;14:109. https://doi.org/10.1186/s13041-021-00821-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pyner S. The paraventricular nucleus and heart failure. Exp Physiol. 2014;99:332–9. https://doi.org/10.1113/expphysiol.2013.072678.

    Article  CAS  PubMed  Google Scholar 

  27. Wang FB, Cheng PM, Chi HC, Kao CK, Liao YH. Axons of Passage and Inputs to Superior Cervical Ganglion in Rat. Anat Rec (Hoboken). 2018;301:1906–16. https://doi.org/10.1002/ar.23953.

    Article  CAS  PubMed  Google Scholar 

  28. Shi Y, Li Y, Yin J, Hu H, Xue M, Li X, Cheng W, Wang Y, Li X, Wang Y, et al. A novel sympathetic neuronal GABAergic signalling system regulates NE release to prevent ventricular arrhythmias after acute myocardial infarction. Acta Physiol. 2019;227:e13315.

    Article  Google Scholar 

  29. Lindberg D, Chen P, Li C. Conditional viral tracing reveals that steroidogenic factor 1-positive neurons of the dorsomedial subdivision of the ventromedial hypothalamus project to autonomic centers of the hypothalamus and hindbrain. J Comp Neurol. 2013;521:3167–90. https://doi.org/10.1002/cne.23338.

    Article  CAS  PubMed  Google Scholar 

  30. Lim K, Barzel B, Burke SL, Armitage JA, Head GA. Origin of aberrant blood pressure and sympathetic regulation in diet-induced obesity. Hypertension. 2016;68:491–500. https://doi.org/10.1161/HYPERTENSIONAHA.116.07461.

    Article  CAS  PubMed  Google Scholar 

  31. Priori SG, Blomstrom-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, Elliott PM, Fitzsimons D, Hatala R, Hindricks G, et al. ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36:2793–867.

    Article  PubMed  Google Scholar 

  32. Chen M, Zhou X, Yu L, Liu Q, Sheng X, Wang Z, Wang S, Jiang H, Zhou S. Low-Level vagus nerve stimulation attenuates myocardial ischemic reperfusion injury by antioxidative stress and antiapoptosis reactions in canines. J Cardiovasc Electrophysiol. 2016;27:224–31. https://doi.org/10.1111/jce.12850.

    Article  PubMed  Google Scholar 

  33. Hasham MG, Baxan N, Stuckey DJ, Branca J, Perkins B, Dent O, Duffy T, Hameed TS, Stella SE, Bellahcene M, et al. Systemic autoimmunity induced by the TLR7/8 agonist Resiquimod causes myocarditis and dilated cardiomyopathy in a new mouse model of autoimmune heart disease. Dis Model Mech. 2017;10:259–70. https://doi.org/10.1242/dmm.027409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Kleijn DPV, Chong SY, Wang X, Yatim S, Fairhurst AM, Vernooij F, Zharkova O, Chan MY, Foo RSY, Timmers L, et al. Toll-like receptor 7 deficiency promotes survival and reduces adverse left ventricular remodelling after myocardial infarction. Cardiovasc Res. 2019;115:1791–803. https://doi.org/10.1093/cvr/cvz057.

    Article  CAS  PubMed  Google Scholar 

  35. Pellerin A, Yasuda K, Cohen-Bucay A, Sandra V, Shukla P, Nundel K, Viglianti GA, Xie Y, Klein U, et al. Monoallelic IRF5 deficiency in B cells prevents murine lupus. JCI Insight. 2021. https://doi.org/10.1172/jci.insight.141395.

    Article  PubMed  PubMed Central  Google Scholar 

  36. van Diepen S, Roe MT, Lopes RD, Stebbins A, James S, Newby LK, Moliterno DJ, Neumann FJ, Ezekowitz JA, Mahaffey KW, et al. Baseline NT-proBNP and biomarkers of inflammation and necrosis in patients with ST-segment elevation myocardial infarction: insights from the APEX-AMI trial. J Thromb Thrombolysis. 2012;34:106–13. https://doi.org/10.1007/s11239-012-0691-0.

    Article  CAS  PubMed  Google Scholar 

  37. Dusi V, Ghidoni A, Ravera A, De Ferrari GM, Calvillo L. Chemokines and heart disease: a network connecting cardiovascular biology to immune and autonomic nervous systems. Mediators Inflamm. 2016;2016:5902947. https://doi.org/10.1155/2016/5902947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xiao H, Li H, Wang JJ, Zhang JS, Shen J, An XB, Zhang CC, Wu JM, Song Y, Wang XY, et al. IL-18 cleavage triggers cardiac inflammation and fibrosis upon beta-adrenergic insult. Eur Heart J. 2018;39:60–9. https://doi.org/10.1093/eurheartj/ehx261.

    Article  CAS  PubMed  Google Scholar 

  39. Ahmed AA, Ahmed AAE, El Morsy EM, Nofal S. Dimethyl fumarate interferes with MyD88-dependent toll-like receptor signalling pathway in isoproterenol-induced cardiac hypertrophy model. J Pharm Pharmacol. 2018;70:1521–30. https://doi.org/10.1111/jphp.13000.

    Article  CAS  PubMed  Google Scholar 

  40. Wang M, Li S, Zhou X, Huang B, Zhou L, Li X, Meng G, Yuan S, Wang Y, Wang Z, et al. Increased inflammation promotes ventricular arrhythmia through aggravating left stellate ganglion remodeling in a canine ischemia model. Int J Cardiol. 2017;248:286–93. https://doi.org/10.1016/j.ijcard.2017.08.011.

    Article  PubMed  Google Scholar 

  41. Courties G, Heidt T, Sebas M, Iwamoto Y, Jeon D, Truelove J, Tricot B, Wojtkiewicz G, Dutta P, Sager HB, et al. In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing. J Am Coll Cardiol. 2014;63:1556–66. https://doi.org/10.1016/j.jacc.2013.11.023.

    Article  CAS  PubMed  Google Scholar 

  42. Shi H, Zhou P, Ni YQ, Wang SS, Song R, Shen AL, Fang ZH, Wang L. In vivo and in vitro studies of Danzhi Jiangtang capsules against diabetic cardiomyopathy via TLR4/MyD88/NF-kappaB signaling pathway. Saudi Pharm J. 2021;29:1432–40. https://doi.org/10.1016/j.jsps.2021.11.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao K, Li X, Yang J, Huang Z, Li C, Huang H, Zhang K, Li D, Zhang L, Zheng X. Protective effect of Amomum Roxb essential oils in lipopolysaccharide-induced acute lung injury mice and its metabolomics. J Ethnopharmacol. 2022;290:11511.

    Article  Google Scholar 

  44. Segatto M, Szokoll R, Fittipaldi R, Bottino C, Nevi L, Mamchaoui K, Filippakopoulos P, Caretti G. BETs inhibition attenuates oxidative stress and preserves muscle integrity in duchenne muscular dystrophy. Nat Commun. 2020;11:6108. https://doi.org/10.1038/s41467-020-19839-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–35. https://doi.org/10.1056/NEJMra071667.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the grants from National Natural Science Foundation of China (No. 81871486, 81970287, 82100530), and the Foundation for Innovative Research Groups of Natural Science Foundation of Hubei Province, China (2021CFA010).

Author information

Authors and Affiliations

Authors

Contributions

ZL, HJ, HX and XZ designed the study. ZL, ZL, HZ, YZ, XX, and ZL conducted the study. ZL HZ, FG, YW, and ZZ analyzed the data. ZL, ZL, LZ and YW drafted the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaoya Zhou, Hao Xia or Hong Jiang.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

All experimental protocols in this study were approved by the Animal Ethics Committee of Wuhan University under approval number SY2019-030.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 956 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liu, Z., Zhou, H. et al. Increased sympathetic outflow induced by emotional stress aggravates myocardial ischemia–reperfusion injury via activation of TLR7/MyD88/IRF5 signaling pathway. Inflamm. Res. 72, 901–913 (2023). https://doi.org/10.1007/s00011-023-01708-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01708-0

Keywords

Navigation