Skip to main content

Advertisement

Log in

IL-33 induces histidine decarboxylase, especially in c-kit+ cells and mast cells, and roles of histamine include negative regulation of IL-33-induced eosinophilia

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and methods

IL-33 is present in endothelial, epithelial, and fibroblast-like cells and released upon cell injury. IL-33 reportedly induces mast-cell degranulation and is involved in various diseases, including allergic diseases. So, IL-33-related diseases seem to overlap with histamine-related diseases. In addition to the release from mast cells, histamine is newly formed by the induction of histidine decarboxylase (HDC). Some inflammatory and/or hematopoietic cytokines (IL-1, IL-3, etc.) are known to induce HDC, and the histamine produced by HDC induction is released without storage. We examined the involvement of HDC and histamine in the effects of IL-33.

Results

A single intraperitoneal injection of IL-33 into mice induced HDC directly and/or via other cytokines (including IL-5) within a few hours in various tissues, particularly strongly in hematopoietic organs. The major cells exhibiting HDC-induction were mast cells and c-kit+ cells in the bone marrow. HDC was also induced in non-mast cells in non-hematopoietic organs. HDC, histamine, and histamine H4 receptors (H4Rs) contributed to the suppression of IL-33-induced eosinophilia.

Conclusion

IL-33 directly and indirectly (via IL-5) induces HDC in various cells, particularly potently in c-kit+ cells and mature mast cells, and the newly formed histamine contributes to the negative regulation of IL-33-induced eosinophilia via H4Rs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Research data are not shared.

References

  1. Liew FY, Girard JP, Turnquist HR. Interleukin-33 in health and disease. Nat Rev Immunol. 2016;16:676–89.

    Article  CAS  PubMed  Google Scholar 

  2. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF, Kastelein RA. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23:479–90.

    Article  CAS  PubMed  Google Scholar 

  3. Chackerian AA, Oldham ER, Murphy EE, Schmitz J, Pflanz S, Kastelein RA. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J Immunol. 2007;179:2551–5.

    Article  CAS  PubMed  Google Scholar 

  4. Arend WP, Palmer G, Gabay C. IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev. 2008;223:20–38.

    Article  CAS  PubMed  Google Scholar 

  5. Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol. 2010;10:103–10.

    Article  CAS  PubMed  Google Scholar 

  6. Galand C, Leyva-Castillo JM, Yoon J, Han A, Lee MS, McKenzie ANJ, Stassen M, Oyoshi MK, Finkelman FD, Geha RS. IL-33 promotes food anaphylaxis in epicutaneously sensitized mice by targeting mast cells. J Allergy Clin Immunol. 2016;138:1356–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nascimento DC, Melo PH, Piñeros AR, Ferreira RG, Colón DF, Donate PB, Castanheira FV, Gozzi A, Czaikoski PG, Niedbala W, Borges MC, Zamboni DS, Liew FY, Cunha FQ, Alves-Filho JC. IL-33 contributes to sepsis-induced long-term immunosuppression by expanding the regulatory T cell population. Nat Commun. 2017;8:14919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams MA, O’Callaghan A, Corr SC. IL-33 and IL-18 in inflammatory bowel disease etiology and microbial interactions. Front Immunol. 2019;10:1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Taniguchi S, Elhance A, Van Duzer A, Kumar S, Leitenberger JJ, Oshimori N. Tumor-initiating cells establish an IL-33-TGF-beta niche signaling loop to promote cancer progression. Science. 2020;369:eaay1813.

    Article  CAS  PubMed  Google Scholar 

  10. Chen YL, Gutowska-Owsiak D, Hardman CS, Westmoreland M, MacKenzie T, Cifuentes L, Waithe D, Lloyd-Lavery A, Marquette A, Londei M, Ogg G. Proof-of-concept clinical trial of etokimab shows a key role for IL-33 in atopic dermatitis pathogenesis. Sci Transl Med. 2019;11:eaax2945.

    Article  CAS  PubMed  Google Scholar 

  11. Chinthrajah S, Cao S, Liu C, Lyu SC, Sindher SB, Long A, Sampath V, Petroni D, Londei M, Nadeau KC. Phase 2a randomized, placebo-controlled study of anti-IL-33 in peanut allergy. JCI Insight. 2019;4:e131347.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kelsen SG, Agache IO, Soong W, Israel E, Chupp GL, Cheung DS, Theess W, Yang X, Staton TL, Choy DF, Fong A, Dash A, Dolton M, Pappu R, Brightling CE. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: a randomized clinical trial. J Allergy Clin Immunol. 2021;148:790–8.

    Article  CAS  PubMed  Google Scholar 

  13. Kinbara M, Bando K, Shiraishi D, Kuroishi T, Nagai Y, Ohtsu H, Takano-Yamamoto T, Sugawara S, Endo Y. Mast cell histamine-mediated transient inflammation following exposure to nickel promotes nickel allergy in mice. Exp Dermatol. 2016;25:466–71.

    Article  CAS  PubMed  Google Scholar 

  14. Steelant B, Seys SF, Van Gerven L, Van Woensel M, Farré R, Wawrzyniak P, Kortekaas Krohn I, Bullens DM, Talavera K, Raap U, Boon L, Akdis CA, Boeckxstaens G, Ceuppens JL, Hellings PW. Histamine and T helper cytokine-driven epithelial barrier dysfunction in allergic rhinitis. J Allergy Clin Immunol. 2018;141:951-963.e8.

    Article  CAS  PubMed  Google Scholar 

  15. Bando K, Kuroishi T, Sugawara S, Endo Y. Interleukin-1 and histamine are essential for inducing nickel allergy in mice. Clin Exp Allergy. 2019;49:1362–73.

    Article  CAS  PubMed  Google Scholar 

  16. Schaper-Gerhardt K, Rossbach K, Nikolouli E, Werfel T, Gutzmer R, Mommert S. The role of the histamine H(4) receptor in atopic dermatitis and psoriasis. Br J Pharmacol. 2020;177:490–502.

    Article  CAS  PubMed  Google Scholar 

  17. Yamaga S, Yanase Y, Ishii K, Ohshimo S, Shime N, Hide M. Decreased intracellular histamine concentration and basophil activation in anaphylaxis. Allergol Int. 2020;69:78–83.

    Article  CAS  PubMed  Google Scholar 

  18. Yang XD, Ai W, Asfaha S, Bhagat G, Friedman RA, Jin G, Park H, Shykind B, Diacovo TG, Falus A, Wang TC. Histamine deficiency promotes inflammation-associated carcinogenesis through reduced myeloid maturation and accumulation of CD11b+Ly6G+ immature myeloid cells. Nat Med. 2011;17:87–95.

    Article  CAS  PubMed  Google Scholar 

  19. Endo Y, Kikuchi T, Takeda Y, Nitta Y, Rikiishi H, Kumagai K. GM-CSF and G-CSF stimulate the synthesis of histamine and putrescine in the hematopoietic organs in vivo. Immunol Lett. 1992;33:9–13.

    Article  CAS  PubMed  Google Scholar 

  20. Endo Y, Nakamura M, Nitta Y, Kumagai K. Effects of macrophage depletion on the induction of histidine decarboxylase by lipopolysaccharide, interleukin 1 and tumour necrosis factor. Br J Pharmacol. 1995;114:187–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yamaguchi K, Motegi K, Kurimoto M, Endo Y. Induction of the activity of the histamine forming enzyme, histidine decarboxylase, in mice by IL-18 and by IL-18 plus IL-12. Inflamm Res. 2000;49:513–9.

    Article  CAS  PubMed  Google Scholar 

  22. Kikuchi H, Watanabe M, Endo Y. Induction by interleukin-1 (IL-1) of the mRNA of histidine decarboxylase, the histamine-forming enzyme, in the lung of mice in vivo and the effect of actinomycin D. Biochem Pharmacol. 1997;53:1383–8.

    Article  CAS  PubMed  Google Scholar 

  23. Lebel B, Schneider E, Piquet-Pelllorce C, Machavoine F, Kindler V, Luffau G, Dy M. Antigenic challenge of immunized mice induces endogenous production of IL-3 that increases histamine synthesis in hematopoietic organs. J Immunol. 1990;145:1222–6.

    Article  CAS  PubMed  Google Scholar 

  24. Dy M, Schneider E. Histamine-cytokine connection in immunity and hematopoiesis. Cytokine Growth Factor Rev. 2004;25:393–410.

    Article  Google Scholar 

  25. Schayer RW. Induced synthesis of histamine, microcirculatory regulation, and the mechanism of action of the adrenal glucocorticoid hormones. Progr Allergy. 1963;7:187–212.

    CAS  Google Scholar 

  26. Kahlson G, Rosengren E. New approaches to the physiology of histamine. Physiol Rev. 1968;48:155–96.

    Article  CAS  PubMed  Google Scholar 

  27. Endo Y. Simultaneous induction of histidine and ornithine decarboxylases and changes in their product amines following the injection of Escherichia coli lipopolysaccharide into mice. Biochem Pharmacol. 1982;31:1643–7.

    Article  CAS  PubMed  Google Scholar 

  28. Endo Y, Suzuki R, Kumagai K. Macrophages can produce factors capable of inducing histidine decarboxylase, a histamine-forming enzyme, in vivo in the liver, spleen and lung of mice. Cell Immunol. 1986;97:13–22.

    Article  CAS  PubMed  Google Scholar 

  29. Huang H, Li Y, Liang J, Finkelman FD. Molecular regulation of histamine synthesis. Front Immunol. 2018;20:1392.

    Article  Google Scholar 

  30. Hirasawa N. Expression of histidine decarboxylase and its roles in inflammation. Int J Mol Sci. 2019;20:376.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schirmer B, Neumann D. The function of the histamine H4 receptor in inflammatory and inflammation-associated diseases of the gut. Int J Mol Sci. 2021;22:6116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pushparaj PN, Tay HK, H’ng SC, Pitman N, Xu D, McKenzie A, Liew FY, Melendez AJ. The cytokine interleukin-33 mediates anaphylactic shock. Proc Natl Acad Sci. 2009;106:9773–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Komai-Koma M, Brombacher F, Pushparaj PN, Arendse B, McSharry C, Alexander J, Chaudhuri R, Thomson NC, McKenzie ANJ, McInnes I, Liew FY, Xu D. Interleukin-33 amplifies IgE synthesis and triggers mast cell degranulation via Interleukin-4 in na ̈ıve mice. Allergy. 2012;67:1118–26.

    Article  CAS  PubMed  Google Scholar 

  34. Haenuki Y, Matsushita K, Futatsugi-Yumikura S, Ishii KJ, Kawagoe T, Imoto Y, Fujieda S, Yasuda M, Hisa Y, Akira S, Nakanishi K, Yoshimoto T. A critical role of IL-33 in experimental allergic rhinitis. J Allergy Clin Immunol. 2012;130:184-94.e11.

    Article  CAS  PubMed  Google Scholar 

  35. Schneider E, Petit-Bertron A-F, Bricard R, Levasseur M, Ramadan A, Girard J-P, Herbelin A, Dy M. IL-33 activates unprimed murine basophils directly in vitro and induces their in vivo expansion indirectly by promoting hematopoietic growth factor production. J Immunol. 2009;183:3591–7.

    Article  CAS  PubMed  Google Scholar 

  36. Babina M, Wang Z, Franke K, Guhl S, Artuc M, Zuberbier T. Yin-Yang of IL-33 in human skin mast cells: reduced degranulation, but augmented histamine synthesis through p38 activation. J Invest Dermatol. 2019;139:1516-1525.e3.

    Article  CAS  PubMed  Google Scholar 

  37. Ohtsu H, Tanaka S, Terui T, Hori Y, Makabe-Kobayashi Y, Pejler G, Tchougounova E, Hellman L, Gertsenstein M, Hirasawa N, Sakurai E, Buzás E, Kovács P, Csaba G, Kittel A, Okada M, Hara ML, Numayama-Tsuruta K, Ishigaki-Suzuki S, Ohuchi K, Ichikawa A, Falus A, Watanabe T, Nagy A. Mice lacking histidine decarboxylase exhibit abnormal mast cells. FEBS Lett. 2001;502:53–6.

    Article  CAS  PubMed  Google Scholar 

  38. Horai R, Asano M, Sudo K, Kanuka H, Suzuki M, Nishihara M, Takahashi M, Iwakura Y. Production of mice deficient in genes for interleukin (IL)-1α, IL-1β, IL-1α/β, and IL-1 receptor antagonist shows that IL-1β is crucial in turpentine-induced fever development and glucocorticoid secretion. J Exp Med. 1998;187:1463–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takai J, Ohtsu H, Sato A, Uemura S, Fujimura T, Yamamoto M, Moriguchi T. Lipopolysaccharide-induced expansion of histidine decarboxylase-expressing Ly6G+ myeloid cells identified by exploiting histidine decarboxylase BAC-GFP transgenic mice. Sci Rep. 2019;9:15603.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Endo Y. A simple method for the determination of polyamines and histamine and its application to the assay of ornithine decarboxylase and histidine decarboxylase activities. Method Enzymol. 1983;94:42–7.

    Article  CAS  Google Scholar 

  41. Endo Y, Kikuchi T, Nakamura M, Shinoda H. Determination of histamine and polyamines in calcified tissues of mice: contribution of mast cells and histidine decarboxylase to the amount of histamine in the bone. Calcif Tissue Int. 1992;51:67–71.

    Article  CAS  PubMed  Google Scholar 

  42. Ito T, Smrz D, Jung MY, Bandara G, Desai A, Smrzova S, Kuehn HS, Beaven MA, Metcalfe DD, Gilfillan AM. Stem cell factor programs the mast cell activation phenotype. J Immunol. 2012;188:5428–37.

    Article  CAS  PubMed  Google Scholar 

  43. Bando K, Tanaka Y, Kuroishi T, Sasaki K, Yamamoto TT, Sugawara S, Endo Y. Mouse model of hydroquinone hypersensitivity via innate and acquired immunity and its promotion by combined reagents. J Invest Dermatol. 2017;137:1082–93.

    Article  CAS  PubMed  Google Scholar 

  44. Willebrand R, Voehringer D. IL-33-Induced cytokine secretion and survival of mouse eosinophils is promoted by autocrine GM-CSF. PLoS ONE. 2016;11:e0163751.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Salachas F, Schneider E, Lemoine FM, Lebel B, Daëron M, Navarro S, Ziltener H, Dy M. Aggregated IgE mimic interleukin-3-induced histamine synthesis by murine hematopoietic progenitors. Blood. 1994;4:1098–107.

    Article  Google Scholar 

  46. Grootens J, Ungerstedt JS, Nilsson G, Dahlin JS. Deciphering the differentiation trajectory from hematopoietic stem cells to mast cells. Blood Adv. 2018;2:2273–81.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cheng H, Zheng Z, Cheng T. New paradigms on hematopoietic stem cell differentiation. Protein Cell. 2020;11:34–44.

    Article  PubMed  Google Scholar 

  48. Endo Y, Nakamura M. The effects of LPS, IL-1 and TNFα on the hepatic accumulation of 5HT and platelets in the mouse. Br J Pharmacol. 1992;105:613–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Endo Y, Tabata T, Kuroda H, Tadano T, Matsushima K, Watanabe M. Induction of histidine decarboxylase in skeletal muscle in mice by electrical stimulation, prolonged walking and interleukin-1. J Physiol. 1998;509:587–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Johnston LK, Hsu CL, Krier-Burris RA, Chhiba KD, Chien KB, McKenzie A, Berdnikovs S, Bryce PJ. IL-33 precedes IL-5 in regulating eosinophil commitment and is required for eosinophil homeostasis. J Immunol. 2016;197:3445–53.

    Article  CAS  PubMed  Google Scholar 

  51. Yang ZP, Ling DY, Xie YH, Wu WX, Li JR, Jiang J, Zheng JL, Fan YH, Zhang Y. The association of serum IL-33 and sST2 with breast cancer. Dis Markers. 2015;2015:516895.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Terras S, Opitz E, Moritz RK, Höxtermann S, Gambichler T, Kreuter A. Increased serum IL-33 levels may indicate vascular involvement in systemic sclerosis. Ann Rheum Dis. 2013;72:144–5.

    Article  CAS  PubMed  Google Scholar 

  53. Mitsui A, Tada Y, Takahashi T, Shibata S, Kamata M, Miyagaki T, Fujita H, Sugaya M, Kadono T, Sato S, Asano Y. Serum IL-33 levels are increased in patients with psoriasis. Clin Exp Dermatol. 2016;41:183–9.

    Article  CAS  PubMed  Google Scholar 

  54. Akcay A, Nguyen Q, He Z, Turkmen K, Won Lee D, Hernando AA, Altmann C, Toker A, Pacic A, Ljubanovic DG, Jani A, Faubel S, Edelstein CL. IL-33 exacerbates acute kidney injury. J Am Soc Nephrol. 2011;22:2057–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Komai-Koma M, Gilchrist DS, McKenzie AN, Goodyear CS, Xu D, Liew FY. IL-33 activates B1 cells and exacerbates contact sensitivity. J Immunol. 2011;186:2584–91.

    Article  CAS  PubMed  Google Scholar 

  56. Xu D, Jiang HR, Kewin P, Li Y, Mu R, Fraser AR, Pitman N, Kurowska-Stolarska M, McKenzie AN, McInnes IB, Liew FY. IL-33 exacerbates antigen-induced arthritis by activating mast cells. Proc Natl Acad Sci USA. 2008;105:10913–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stolarski B, Kurowska-Stolarska M, Kewin P, Xu D, Liew FY. IL-33 exacerbates eosinophil- mediated airway inflammation. J Immunol. 2010;185:3472–80.

    Article  CAS  PubMed  Google Scholar 

  58. Dominguez D, Ye C, Geng Z, Chen S, Fan J, Qin L, Long A, Wang L, Zhang Z, Zhang Y, Fang D, Kuzel TM, Zhang B. Exogenous IL-33 restores dendritic cell activation and maturation in established cancer. J Immunol. 2017;198:1365–75.

    Article  CAS  PubMed  Google Scholar 

  59. Alves-Filho JC, Sônego F, Souto FO, Freitas A, Verri WA Jr, Auxiliadora-Martins M, Basile- Filho A, McKenzie AN, Xu D, Cunha FQ, Liew FY. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat Med. 2010;16:708–12.

    Article  CAS  PubMed  Google Scholar 

  60. Fu AK, Hung KW, Yuen MY, Zhou X, Mak DS, Chan IC, Cheung TH, Zhang B, Fu WY, Liew FY, Ip NY. IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline. Proc Natl Acad Sci USA. 2016;113:E2705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu X, Yoshida A, Sasano T, Iwakura Y, Endo Y. Histamine production via mast cell-independent induction of histidine decarboxylase in response to lipopolysaccharide and interleukin-1. Int Immunopharmacol. 2004;4:513–20.

    Article  CAS  PubMed  Google Scholar 

  62. Le H, Kim W, Kim J, Cho HR, Kwon B. Interleukin-33: a mediator of inflammation targeting hematopoietic stem and progenitor cells and their progenies. Front Immunol. 2013;4:104.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Capitano ML, Griesenauer B, Guo B, Cooper S, Paczesny S, Broxmeyer HE. The IL-33 receptor/ST2 acts as a positive regulator of functional mouse bone marrow hematopoietic stem and progenitor cells. Blood Cells Mol Dis. 2020;84:102435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Swann JW, Koneva LA, Regan-Komito D, Sansom SN, Powrie F, Griseri T. IL-33 promotes anemia during chronic inflammation by inhibiting differentiation of erythroid progenitors. J Exp Med. 2020;217:e20200164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen X, Deng H, Churchill MJ, Luchsinger LL, Du X, Chu TH, Friedman RA, Middelhoff M, Ding H, Tailor YH, Wang ALE, Liu H, Niu Z, Wang H, Jiang Z, Renders S, Ho SH, Shah SV, Tishchenko P, Chang W, Swayne TC, Munteanu L, Califano A, Takahashi R, Nagar KK, Renz BW, Worthley DL, Westphalen CB, Hayakawa Y, Asfaha S, Borot F, Lin CS, Snoeck HW, Mukherjee S, Wang TC. Bone marrow myeloid cells regulate myeloid-biased hematopoietic stem cells via a histamine-dependent feedback loop. Cell Stem Cell. 2017;21:747-760.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dahlin JS, Hamey FK, Pijuan-Sala B, Shepherd M, Lau WWY, Nestorowa S, Weinreb C, Wolock S, Hannah R, Diamanti E, Kent DG, Göttgens B, Wilson NK. A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice. Blood. 2018;131:e1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Inami Y, Sasaki A, Andoh T, Kuraishi Y. Surfactant-induced chronic pruritus: role of L-histidine decarboxylase expression and histamine production in epidermis. Acta Derm Venereol. 2014;94:645–50.

    Article  PubMed  Google Scholar 

  68. Gutowska-Owsiak D, Greenwald L, Watson C, Selvakumar TA, Wang X, Ogg GS. The histamine synthesizing enzyme histidine decarboxylase is upregulated by keratinocytes in atopic skin. Br J Dermatol. 2014;171:771–8.

    Article  CAS  PubMed  Google Scholar 

  69. Deng X, Wu X, Yu Z, Arai I, Sasano T, Sugawara S, Endo Y. Inductions of histidine decarboxylase in mouse tissues following systemic antigen-challenge: contributions made by mast cells, non-mast cells, and IL-1. Int Arch Allergy Immunol. 2007;144:69–78.

    Article  CAS  PubMed  Google Scholar 

  70. Koarai A, Ichinose M, Ishigaki-Suzuki S, Yamagata S, Sugiura H, Sakurai E, Makabe-Kobayashi Y, Kuramasu A, Watanabe T, Shirato K, Hattori T, Ohtsu H. Disruption of L-histidine decarboxylase reduces airway eosinophilia but not hyperresponsiveness. Am J Respir Crit Care Med. 2003;167:758–63.

    Article  PubMed  Google Scholar 

  71. Kozma GT, Losonczy G, Keszei M, Komlósi Z, Buzás E, Pállinger E, Appel J, Szabó T, Magyar P, Falus A, Szalai C. Histamine deficiency in gene-targeted mice strongly reduces antigen-induced airway hyper-responsiveness, eosinophilia and allergen-specific IgE. Int Immunol. 2003;15:963–73.

    Article  CAS  PubMed  Google Scholar 

  72. Ling P, Ngo K, Nguyen S, Thurmond RL, Edwards JP, Karlsson L, Fung-Leung WP. Histamine H4 receptor mediates eosinophil chemotaxis with cell shape change and adhesion molecule upregulation. Br J Pharmacol. 2004;142:161–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Swartzendruber JA, Byrne AJ, Bryce PJ. Cutting edge: histamine is required for IL-4-driven eosinophilic allergic responses. J Immunol. 2012;188:536–40.

    Article  CAS  PubMed  Google Scholar 

  74. Hasala H, Giembycz MA, Janka-Junttila M, Moilanen E, Kankaanranta H. Histamine reverses IL-5-afforded human eosinophil survival by inducing apoptosis: pharmacological evidence for a novel mechanism of action of histamine. Pulm Pharmacol Ther. 2008;21:222–33.

    Article  CAS  PubMed  Google Scholar 

  75. Byron JW. Mechanism for histamine H2-receptor induced cell-cycle changes in the bone marrow stem cell. Agents Actions. 1977;7:209–13.

    Article  CAS  PubMed  Google Scholar 

  76. Nakaya N, Tasaka K. The influence of histamine on precursors of granulocytic leukocytes in murine bone marrow. Life Sci. 1988;42:999–1010.

    Article  CAS  PubMed  Google Scholar 

  77. Schneider E, Piquet-Pellorce C, Dy M. New role for histamine in interleukin-3-induced proliferation of hematopoietic stem cells. J Cell Physiol. 1990;143:337–43.

    Article  CAS  PubMed  Google Scholar 

  78. Schneider E, Ploemacher RE, Nabarra B, Brons NH, Dy M. Mast cells and their committed precursors are not required for interleukin-3-induced histamine synthesis in murine bone marrow: characteristics of histamine-producing cells. Blood. 1993;81:1161–9.

    Article  CAS  PubMed  Google Scholar 

  79. Petit-Bertron A-F, Machavoine F, Defresne MP, Gillard M, Chatelain P, Mistry P, Schneider E, Dy M. H4 histamine receptors mediate cell cycle arrest in growth factor-induced murine and human hematopoietic progenitor cells. PLoS ONE. 2009;4:e6054.

    Article  Google Scholar 

  80. Schneider E, Bertron A-F, Dy M. Modulation of hematopoiesis through histamine receptor signaling. Front Biosci. 2011;S3:467–73.

    Article  CAS  Google Scholar 

  81. Liu C, Ma X-J, Jiang X, Wilson SJ, Hofstra CL, Blevitt J, Pyati J, Li X, Chai W, Carruthers N, Lovenberg TW. Cloning and pharmacological characterization of a fourth histamine receptor (H4) expressed in bone marrow. Mol Pharmacol. 2001;59:420–6.

    Article  CAS  PubMed  Google Scholar 

  82. Bando K, Tanaka Y, Mizoguchi I, Sugawara S, Endo Y. Histamine acts via H4-receptor stimulation to cause augmented inflammation when lipopolysaccharide is co-administered with a nitrogen-containing bisphosphonate. Inflamm Res. 2022;71:1603–17.

    Article  CAS  PubMed  Google Scholar 

  83. Kenswil KJG, Jaramillo AC, Ping Z, Chen S, Hoogenboezem RM, Mylona MA, Adisty MN, Bindels EMJ, Bos PK, Stoop H, Lam KH, van Eerden B, Cupedo T, Raaijmakers MHGP. Characterization of endothelial cells associated with hematopoietic niche formation in humans identifies IL-33 as an anabolic factor. Cell Rep. 2018;22:666–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Robert Timms for editing the manuscript. We thank the Biomedical Research Core of Tohoku University Graduate School of Medicine for the use of its equipment. We thank Dr. Takashi Moriguchi and Dr. Jun Takai for providing HDC-GFP mice.

Funding

This work was supported by Grants from the Japan Society for the Promotion of Science [18K17240 and 21K10157 (Bando Kanan)].

Author information

Authors and Affiliations

Authors

Contributions

Study was designed and conducted by KB, YT, SS, IM, and YE. Data collected by KB. Data analyzed by KB and YE. Technically assisted by YT and SW. Manuscript written by KB and YE and approved by all authors.

Corresponding author

Correspondence to Kanan Bando.

Ethics declarations

Conflict of interest

Authors have no conflicts of interest in this study.

Ethics approval

All animal procedures were approved by the Institutional Animal Care and Use Committee of Tohoku University (approval number: 2018DnA-013). All experiments complied with the Regulations for Animal Experiments and Related Activities at Tohoku University.

Consent for publication

Not applicable.

Additional information

Responsible Editor: Bernhard Gibbs.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 353 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bando, K., Tanaka, Y., Winias, S. et al. IL-33 induces histidine decarboxylase, especially in c-kit+ cells and mast cells, and roles of histamine include negative regulation of IL-33-induced eosinophilia. Inflamm. Res. 72, 651–667 (2023). https://doi.org/10.1007/s00011-023-01699-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01699-y

Keywords

Navigation