Skip to main content

Advertisement

Log in

Enhancing effect of sodium butyrate on phosphatidylserine–liposome-induced macrophage polarization

  • Original Research Article
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Object

Phosphatidylserine-containing liposomes (PSLs) can mimic the immunomodulatory effects of apoptotic cells by binding to the phosphatidylserine receptors of macrophages. Sodium butyrate, an antiinflammatory short-chain fatty acid, is known to facilitate the M2 polarization of macrophages. This study aimed to investigate the effect of sodium butyrate on PSLs-induced macrophage polarization.

Methods

PSLs physical properties and cellular uptake tests, reverse transcription–quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, immunofluorescence staining, and flow cytometry analysis were performed to assess the polarization-related indicators of M1/M2 macrophages.

Results

The results showed that sodium butyrate did not affect the size and cellular uptake of PSLs. For M1 macrophage polarization, sodium butyrate significantly intensified the antiinflammatory function of PSLs, inhibiting LPS-induced proinflammatory genes expression, cytokines and enzyme release (tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, and inducible nitric oxide synthase), as well as CD86 (M1 marker) expression. In addition to the enhancing effect of antiinflammation, sodium butyrate also promoted PSL-induced M2 macrophages polarization, especially elevated thymus and activation-regulated chemokine (TARC) and arginase-1 (Arg-1) enzyme levels which are involved in tissue repair.

Conclusion

Sodium butyrate enhanced antiinflammatory properties and M2-polarization inducing effect of PSLs. Therefore, sodium butyrate may represent a novel approach to enhance PSL-induced macrophage polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data is contained within the article.

References

  1. Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11:762–74.

    Article  CAS  Google Scholar 

  2. Vernero M, De Blasio F, Ribaldone DG, Bugianesi E, Pellicano R, Saracco GM, Astegiano M, Caviglia GP. The usefulness of microencapsulated sodium butyrate add-on therapy in maintaining remission in patients with ulcerative colitis: a prospective observational study. J Clin Med. 2020;9:3941.

    Article  CAS  Google Scholar 

  3. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593–604.

    Article  CAS  Google Scholar 

  4. Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol. 2014;5:514.

    Article  Google Scholar 

  5. Saleh B, Dhaliwal HK, Portillo-Lara R, Shirzaei Sani E, Abdi R, Amiji MM, Annabi N. Local immunomodulation using an adhesive hydrogel loaded with miRNA-laden nanoparticles promotes wound healing. Small. 2019;15:e1902232.

    Article  Google Scholar 

  6. Mahon OR, Browe DC, Gonzalez-Fernandez T, Pitacco P, Whelan IT, Von Euw S, Hobbs C, Nicolosi V, Cunningham KT, Mills KHG, et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials. 2020;239:119833.

    Article  CAS  Google Scholar 

  7. Leonel AJ, Alvarez-Leite JI. Butyrate: implications for intestinal function. Curr Opin Clin Nutr Metab Care. 2012;15:474–9.

    Article  CAS  Google Scholar 

  8. Lee C, Lee JW, Seo JY, Hwang SW, Im JP, Kim JS. Lupeol inhibits LPS-induced NF-kappa B signaling in intestinal epithelial cells and macrophages, and attenuates acute and chronic murine colitis. Life Sci. 2016;146:100–8.

    Article  CAS  Google Scholar 

  9. Lee C, Kim BG, Kim JH, Chun J, Im JP, Kim JS. Sodium butyrate inhibits the NF-kappa B signaling pathway and histone deacetylation, and attenuates experimental colitis in an IL-10 independent manner. Int Immunopharmacol. 2017;51:47–56.

    Article  CAS  Google Scholar 

  10. Ji J, Shu D, Zheng M, Wang J, Luo C, Wang Y, Guo F, Zou X, Lv X, Li Y, et al. Microbial metabolite butyrate facilitates M2 macrophage polarization and function. Sci Rep. 2016;6:24838.

    Article  CAS  Google Scholar 

  11. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992;148:2207–16.

    CAS  PubMed  Google Scholar 

  12. Zhang G, Xue H, Sun D, Yang S, Tu M, Zeng R. Soft apoptotic-cell-inspired nanoparticles persistently bind to macrophage membranes and promote anti-inflammatory and pro-healing effects. Acta Biomater. 2021;131:452–63.

    Article  CAS  Google Scholar 

  13. Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest. 2002;109:41–50.

    Article  CAS  Google Scholar 

  14. Otsuka M, Goto K, Tsuchiya S, Aramaki Y. Phosphatidylserine-specific receptor contributes to TGF-beta production in macrophages through a MAP kinase, ERK. Biol Pharm Bull. 2005;28:1707–10.

    Article  CAS  Google Scholar 

  15. Quan H, Park HC, Kim Y, Yang HC. Modulation of the anti-inflammatory effects of phosphatidylserine-containing liposomes by PEGylation. J Biomed Mater Res A. 2017;105:1479–86.

    Article  CAS  Google Scholar 

  16. Dvoriantchikova G, Agudelo C, Hernandez E, Shestopalov VI, Ivanov D. Phosphatidylserine-containing liposomes promote maximal survival of retinal neurons after ischemic injury. J Cereb Blood Flow Metab. 2009;29:1755–9.

    Article  CAS  Google Scholar 

  17. Ma HM, Wu Z, Nakanishi H. Phosphatidylserine-containing liposomes suppress inflammatory bone loss by ameliorating the cytokine imbalance provoked by infiltrated macrophages. Lab Invest. 2011;91:921–31.

    Article  CAS  Google Scholar 

  18. Wu L, Kim Y, Seon GM, Choi SH, Park HC, Son G, Kim SM, Lim BS, Yang HC. Effects of RGD-grafted phosphatidylserine-containing liposomes on the polarization of macrophages and bone tissue regeneration. Biomaterials. 2021;279:121239.

    Article  CAS  Google Scholar 

  19. Langston PK, Shibata M, Horng T. Metabolism supports macrophage activation. Front Immunol. 2017; 8.

  20. Viola A, Munari F, Sanchez-Rodriguez R, Scolaro T, Castegna A. The metabolic signature of macrophage responses. Front Immunol. 2019;10:1462.

    Article  CAS  Google Scholar 

  21. McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF. Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci U S A. 2013;110:17253–8.

    Article  CAS  Google Scholar 

  22. Rostam HM, Reynolds PM, Alexander MR, Gadegaard N, Ghaemmaghami AM. Image based Machine Learning for identification of macrophage subsets. Sci Rep. 2017;7:3521.

    Article  Google Scholar 

  23. Johnston MJ, Semple SC, Klimuk SK, Ansell S, Maurer N, Cullis PR. Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim Biophys Acta. 2007;1768:1121–7.

    Article  CAS  Google Scholar 

  24. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8:102.

    Article  Google Scholar 

  25. Hoffmann PR, Kench JA, Vondracek A, Kruk E, Daleke DL, Jordan M, Marrack P, Henson PM, Fadok VA. Interaction between phosphatidylserine and the phosphatidylserine receptor inhibits immune responses in vivo. J Immunol. 2005;174:1393–404.

    Article  CAS  Google Scholar 

  26. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27:104–19.

    Article  CAS  Google Scholar 

  27. Berni Canani R, Di Costanzo M, Leone L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenetics. 2012;4:4.

    Article  Google Scholar 

  28. Kato T, Saeki H, Tsunemi Y, Shibata S, Tamaki K, Sato S. Thymus and activation-regulated chemokine (TARC)/CC chemokine ligand (CCL) 17 accelerates wound healing by enhancing fibroblast migration. Exp Dermatol. 2011;20:669–74.

    Article  CAS  Google Scholar 

  29. Hesse M, Modolell M, La Flamme AC, Schito M, Fuentes JM, Cheever AW, Pearce EJ, Wynn TA. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J Immunol. 2001;167:6533–44.

    Article  CAS  Google Scholar 

  30. Jude EB, Boulton AJ, Ferguson MW, Appleton I. The role of nitric oxide synthase isoforms and arginase in the pathogenesis of diabetic foot ulcers: possible modulatory effects by transforming growth factor beta 1. Diabetologia. 1999;42:748–57.

    Article  CAS  Google Scholar 

  31. Wehling-Henricks M, Jordan MC, Gotoh T, Grody WW, Roos KP, Tidball JG. Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy. PLoS ONE. 2010;5:e10763.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all participants for taking part in the study. Lele Wu acknowledges support from the China Scholarship Council (CSC, Grant No.201808260022).

Funding

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A1A03039462) and the SNUD Research Fund (860-20190107).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H-CY; methodology, LLW and YK; resources, SHC and QCV; data curation, LLW and H-CY; writing—original draft preparation, H-CY; writing—review and editing, LLW and H-CY.

Corresponding author

Correspondence to Hyeong-Cheol Yang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval

All animal experiments in this study were performed following the guidelines of Institutional Animal Care approved by the Committee of Seoul National University (SNU-201217-4).

Consent to participate

Not applicable.

Consent for publication

All the authors have approved the manuscript for final publication.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Seon, G.M., Kim, Y. et al. Enhancing effect of sodium butyrate on phosphatidylserine–liposome-induced macrophage polarization. Inflamm. Res. 71, 641–652 (2022). https://doi.org/10.1007/s00011-022-01563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01563-5

Keywords

Navigation