Skip to main content
Log in

Standardized fraction of Xylocarpus moluccensis inhibits inflammation by modulating MAPK-NFκB and ROS-HIF1α-PKM2 activation

  • Original Research Article
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Present study investigates the effect of Xylocarpus moluccensis (Lamk.) M. Roem fruit fraction (CDR) on endotoxemia and explores the underlying mechanisms.

Materials and methods

The effect of CDR (1–100 µg/ml) was assessed on cytokines, MAPKs, ROS, and metabolic reprogramming in LPS-induced cells (J774.2 and THP-1) by the conventional methodology of ELISA, PCR, and Western blotting. The effect of CDR (1–50 mg/kg, p.o.) was also evaluated in the mice model of endotoxemia and sepsis.

Results

CDR prevents LPS-induced cytokine production from murine and human whole blood and cell lines. CDR suppressed total cellular and mitochondrial superoxide generation and preserved mitochondrial function in LPS-stimulated phagocytes. Additionally, CDR abrogated LPS-induced MAPK’s phosphorylation and IκBα degradation in J774.2 cells. Moreover, CDR suppressed LPS-induced glycolytic flux as indicated from PKM2, HK-2, PDK-2, and HIF-1α expression in J774.2 cells. In vivo, CDR pre-treatment inhibited pro-inflammatory cytokines release, metabolic reprogramming from oxidative phosphorylation to glycolysis in both LPS-induced endotoxemia and cecal slurry-induced sepsis mice model.

Conclusion

Present study demonstrates the protective effect of CDR on LPS-induced inflammation and sepsis and identifies MAPK-NFκB and ROS-HIF1α-PKM2 as the putative target axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

LPS:

Lipopolysaccharide

TLRs:

Toll-like receptors

TNF-α:

Tumour necrosis factor alpha

IL-6:

Interleukin 6

IL-1β:

Interleukin 1 beta

NLRP3:

NLR family pyrin domain containing 3

IL-4:

Interleukin 4

IL-10:

Interleukin 10

MAPK:

Mitogen-activated protein kinase

ERK1/2:

Extracellular signal-regulated kinases 1/2

JNK1/2:

C-Jun N-terminal kinase 1/2

IκBα:

Inhibitor of kappa B

PKM2:

Pyruvate kinase muscle isozyme M2

HK-2:

Hexokinase-2

PDK-2:

Pyruvate dehydrogenase kinase 2

HIF-1α:

Hypoxia-inducible factor-1alpha

iNOS:

Inducible nitric oxide synthase

Arg-1:

Arginase-1

PAMP:

Pathogen-associated molecular pattern

ROS:

Reactive oxygen species

OXPHOS:

Oxidative phosphorylation

CNS:

Central nervous system

CDRI:

Central Drug Research Institute

RPMI:

Roswell Park Memorial Institute

DMEM:

Dulbecco's modified Eagle medium

PMs:

Peritoneal macrophages

i.p.:

Intraperitoneal

FBS:

Fetal bovine serum

PI:

Protease Inhibitor

DHE:

Dihydroethidium

MSR:

MitoSOX red

DMSO:

Dimethyl sulfoxide

ELISA:

Enzyme-linked immune sorbent assay

BCA:

Bicinchoninic acid assay

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

PVDF:

Polyvinylidene difluoride

TBST:

Tris-buffered saline with Tween

IAEC:

Institutional Animal Ethics Committee

CMC:

Carboxy methyl cellulose

CS:

Cecal slurry

P.O.:

Peroral

TGA:

Thioglycollate

MMP:

Matrix metalloproteinases

RNS:

Reactive nitrogen species

ETC:

Electron transport chain

ATP:

Adenosine triphosphate

References

  1. Ramana KV, Fadl AA, Tammali R, Reddy AB, Chopra AK, Srivastava SK. Aldose reductase mediates the lipopolysaccharide-induced release of inflammatory mediators in RAW264.7 murine macrophages. J Biol Chem. 2006;281:33019–29.

    Article  CAS  PubMed  Google Scholar 

  2. Su BC, Huang HN, Lin TW, Hsiao CD, Chen JY. Epinecidin-1 protects mice from LPS-induced endotoxemia and cecal ligation and puncture-induced polymicrobial sepsis. Biochim Biophys Acta Mol Basis Dis. 2017;1863:3028–37.

    Article  CAS  PubMed  Google Scholar 

  3. Zheng Z, Ma H, Zhang X, Tu F, Wang X, Ha T, et al. Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis. J Infect Dis. 2017;215:1396–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA, et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem. 2014;289:7884–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Langston PK, Shibata M, Horng T. Metabolism supports macrophage activation. Front Immunol. 2017;8:61.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alves-Filho JC, Palsson-McDermott EM. Pyruvate kinase M2: a potential target for regulating inflammation. Front Immunol. 2016;7:145.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xie M, Yu Y, Kang R, Zhu S, Yang L, Zeng L, et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat Commun. 2016;7:13280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Indo HP, Yen HC, Nakanishi I, Matsumoto K, Tamura M, Nagano Y, et al. A mitochondrial superoxide theory for oxidative stress diseases and aging. J Clin Biochem Nutr. 2015;56:1–7.

    Article  CAS  PubMed  Google Scholar 

  9. Liemburg-Apers DC, Willems PH, Koopman WJ, Grefte S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol. 2015;89:1209–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bode M, Longen S, Morgan B, Peleh V, Dick TP, Bihlmaier K, et al. Inaccurately assembled cytochrome c oxidase can lead to oxidative stress-induced growth arrest. Antioxid Redox Signal. 2013;18:1597–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kanshana JS, Rebello SC, Pathak P, Kanuri BN, Aggarwal H, Srivastava V, et al. Standardized fraction of Xylocarpus moluccensis fruits improve vascular relaxation and plaque stability in dyslipidemic models of atherosclerosis. J Ethnopharmacol. 2018;213:81–91.

    Article  PubMed  Google Scholar 

  12. Islam MT, Sharifi-Rad J, Martorell M, Ali ES, Asghar MN, Deeba F, et al. Chemical profile and therapeutic potentials of Xylocarpus moluccensis (Lam.) M. Roem.: a literature-based review. J Ethnopharmacol. 2020;259:112958.

    Article  CAS  PubMed  Google Scholar 

  13. Lakshmi V, Mishra V, Palit G. A new gastroprotective effect of limonoid compounds xyloccensins x and y from Xylocarpus molluccensis in rats. Nat Prod Bioprospect. 2014;4:277–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Markov AV, Sen’kova AV, Babich VO, Odarenko KV, Talyshev VA, Salomatina OV, et al. Dual Effect of soloxolone methyl on LPS-induced inflammation in vitro and in vivo. Int J Mol Sci. 2020;21:7876.

    Article  CAS  PubMed Central  Google Scholar 

  15. Roy AD, Kumar R, Gupta P, Khaliq T, Narender T, Aggarwal V, et al. Xyloccensin X and Y, two new limonoids from Xylocarpus moluccensis: NMR investigation in mixture. Magn Reson Chem. 2006;44:1054–7.

    Article  CAS  PubMed  Google Scholar 

  16. Reddy SS, Chauhan P, Maurya P, Saini D, Yadav PP, Barthwal MK. Coagulin-L ameliorates TLR4 induced oxidative damage and immune response by regulating mitochondria and NOX-derived ROS. Toxicol Appl Pharmacol. 2016;309:87–100.

    Article  CAS  PubMed  Google Scholar 

  17. Reddy SS, Agarwal H, Jaiswal A, Jagavelu K, Dikshit M, Barthwal MK. Macrophage p47(phox) regulates pressure overload-induced left ventricular remodeling by modulating IL-4/STAT6/PPARgamma signaling. Free Radic Biol Med. 2021;168:168–79.

    Article  CAS  PubMed  Google Scholar 

  18. Rana M, Maurya P, Reddy SS, Singh V, Ahmad H, Dwivedi AK, et al. A standardized chemically modified curcuma longa extract modulates IRAK-MAPK signaling in inflammation and potentiates cytotoxicity. Front Pharmacol. 2016;7:223.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang Z, Deng W, Kang R, Xie M, Billiar T, Wang H, et al. Plumbagin protects mice from lethal sepsis by modulating immunometabolism upstream of PKM2. Mol Med. 2016;22:162–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reddy SS, Agarwal H, Barthwal MK. Cilostazol ameliorates heart failure with preserved ejection fraction and diastolic dysfunction in obese and non-obese hypertensive mice. J Mol Cell Cardiol. 2018;123:46–57.

    Article  CAS  PubMed  Google Scholar 

  21. Sharron M, Hoptay CE, Wiles AA, Garvin LM, Geha M, Benton AS, et al. Platelets induce apoptosis during sepsis in a contact-dependent manner that is inhibited by GPIIb/IIIa blockade. PLoS ONE. 2012;7:e41549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sukumaran SK, Selvaraj SK, Prasadarao NV. Inhibition of apoptosis by Escherichia coli K1 is accompanied by increased expression of BclXL and blockade of mitochondrial cytochrome c release in macrophages. Infect Immun. 2004;72:6012–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Borutaite V, Brown GC. Mitochondrial regulation of caspase activation by cytochrome oxidase and tetramethylphenylenediamine via cytosolic cytochrome c redox state. J Biol Chem. 2007;282:31124–30.

    Article  CAS  PubMed  Google Scholar 

  24. Geto Z, Molla MD, Challa F, Belay Y, Getahun T. Mitochondrial dynamic dysfunction as a main triggering factor for inflammation associated chronic non-communicable diseases. J Inflamm Res. 2020;13:97–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dorrington MG, Fraser IDC. NF-kappaB signaling in macrophages: dynamics, crosstalk, and signal integration. Front Immunol. 2019;10:705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Behranvand N, Nasri F, Zolfaghari Emameh R, Khani P, Hosseini A, Garssen J, et al. Chemotherapy: a double-edged sword in cancer treatment. Cancer Immunol Immunother. 2021;71:507–26.

    Article  PubMed  Google Scholar 

  27. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MA, Sheedy FJ, Gleeson LE, et al. Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 2015;21:65–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325–37.

    Article  CAS  PubMed  Google Scholar 

  29. Copeland S, Warren HS, Lowry SF, Calvano SE, Remick D. Acute inflammatory response to endotoxin in mice and humans. Clin Diagn Lab Immunol. 2005;12:60–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Srivastava A, Shinn AS, Lee PJ, Mannam P. MKK3 mediates inflammatory response through modulation of mitochondrial function. Free Radic Biol Med. 2015;83:139–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cai B, Deitch EA, Ulloa L. Novel insights for systemic inflammation in sepsis and hemorrhage. Mediator Inflamm. 2010;2010:642462.

    Article  Google Scholar 

  32. Cheng P, Wang T, Li W, Muhammad I, Wang H, Sun X, et al. Baicalin alleviates lipopolysaccharide-induced liver inflammation in chicken by suppressing TLR4-mediated NF-kappaB pathway. Front Pharmacol. 2017;8:547.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu SF, Malik AB. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol. 2006;290:L622–45.

    Article  CAS  PubMed  Google Scholar 

  34. Boaru SG, Borkham-Kamphorst E, Van de Leur E, Lehnen E, Liedtke C, Weiskirchen R. NLRP3 inflammasome expression is driven by NF-kappaB in cultured hepatocytes. Biochem Biophys Res Commun. 2015;458:700–6.

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y, Jing YY, Zeng CY, Li CG, Xu LH, Yan L, et al. Scutellarin suppresses NLRP3 inflammasome activation in macrophages and protects mice against bacterial sepsis. Front Pharmacol. 2018;8:975.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fernandez-Gil B, Moneim AE, Ortiz F, Shen YQ, Soto-Mercado V, Mendivil-Perez M, et al. Melatonin protects rats from radiotherapy-induced small intestine toxicity. PLoS ONE. 2017;12:e0174474.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dan Dunn J, Alvarez LA, Zhang X, Soldati T. Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol. 2015;6:472–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 2013;6:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med. 2011;208:417–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Long Y, Liu X, Tan XZ, Jiang CX, Chen SW, Liang GN, et al. ROS-induced NLRP3 inflammasome priming and activation mediate PCB 118-induced pyroptosis in endothelial cells. Ecotoxicol Environ Saf. 2020;189:109937.

    Article  CAS  PubMed  Google Scholar 

  41. Arulkumaran N, Deutschman CS, Pinsky MR, Zuckerbraun B, Schumacker PT, Gomez H, et al. Mitochondrial function in sepsis. Shock. 2016;45:271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park DW, Zmijewski JW. Mitochondrial dysfunction and immune cell metabolism in sepsis. Infect Chemother. 2017;49:10–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kelly B, O’Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015;25:771–84.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Corte-Real M. Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell. 2002;13:2598–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vanasco V, Magnani ND, Cimolai MC, Valdez LB, Evelson P, Boveris A, et al. Endotoxemia impairs heart mitochondrial function by decreasing electron transfer, ATP synthesis and ATP content without affecting membrane potential. J Bioenerg Biomembr. 2012;44:243–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the excellent technical help of Mr. C·P Pandey for the central instrument facility, Mr. A.L. Vishwakarma, and Mrs. M. Chaturvedi for the Flow Cytometry experiment from Sophisticated Analytical Instrument Facility; CSIR-CDRI, Lucknow. This paper bears CDRI communication number 10375.

Funding

Grant support to MKB from CSIR, CDRI, and DST (EMR/2016/005340) project is acknowledged. Award of senior research fellowships to HA (3/1/2/(7)/CVD/2018-NCD-II) and SSR (3/1/2/(1)/OBS/18/NCD-II) from ICMR is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

HA performed the majority of experiments, generated figures, analysed the data, and wrote the manuscript draft. SSR involved in in vivo LPS-induced endotoxemia mice models, VS was involved initially in standardization of a few in vivo protocols and experiments, MD gave critical inputs related to in vitro, in vivo studies, and manuscript preparation, and MKB is responsible for the overall concept, project generation, and conduct and finalization of the manuscript.

Corresponding author

Correspondence to Manoj Kumar Barthwal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

All animal procedures were in accordance with the IAEC (approval number: IAEC/2013/53/Renew-04 (240/17)/Dated-07/03/2017 & IAEC/2016/152/Dated-04/11/2016), which follow the Committee for the Purpose of Control and Supervision of Experiments on Animals guidelines and conforming to the Indian National Science Academy international norms.

Consent to participate

Experiments using human blood were conducted out after getting necessary ethical permission from the Institute's human research ethics committee at King George's Medical University (KGMC), Lucknow, India.

Consent for publication

All the co-authors have seen and approved the content of the manuscript for publication.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, H., Sukka, S.R., Singh, V. et al. Standardized fraction of Xylocarpus moluccensis inhibits inflammation by modulating MAPK-NFκB and ROS-HIF1α-PKM2 activation. Inflamm. Res. 71, 423–437 (2022). https://doi.org/10.1007/s00011-022-01549-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01549-3

Keywords

Navigation