Skip to main content
Log in

miR-451-3p alleviates myocardial ischemia/reperfusion injury by inhibiting MAP1LC3B-mediated autophagy

  • Original Research Article
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

We aim to explore the molecular mechanism of myocardial ischemia–reperfusion injury (MIRI).

Methods

The H9C2 cells were cultured under hypoxia/reoxygenation (H/R) condition to induce myocardial injury in vitro. The expression of miR-451-3p and MAP1LC3B was detected by RT-qPCR. Dual-luciferase reporter assay and RNA pull-down assay were performed to examine the relationship between microRNA (miR)-451-3p and MAP1LC3B. CCK8 was used to test cell viability. The level of LDH and CK was evaluated via ELISA. Immunofluorescence assay and flow cytometry were applied to detect autophagy and apoptosis, respectively. Autophagy-related protein expressions were determined by western blotting. Furthermore, an in vivo rat model of MIRI was established by subjection to 30 min ischemia and subsequently 24 h reperfusion for validation of the role of miR-451-3p in regulating MIRI in vivo.

Results

miR-451-3p was down-regulated in MIRI, and miR-451-3p mimics transfection alleviated autophagy and apoptosis induced by MIRI. miR-451-3p could target MAP1LC3B directly. Co-transfection miR-451-3p mimics and pcDNA 3.1 MAP1LC3B curbed the protected effects of miR-451-3p mimics on MIRI.

Conclusions

miR-451-3p played a protective role in MIRI via inhibiting MAP1LC3B-mediated autophagy, which may provide new molecular targets for the treatment of MIRI and further improves the clinical outcomes of heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article. The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

MIRI:

Myocardial ischemia–reperfusion injury

H/R:

Hypoxia/reoxygenation

AMI:

Acute myocardial infarction

MAP1LC3/ LC3:

Microtubule-associated protein 1 light chain 3

FITC:

Fluorescein isothiocyanate

MAP1LC3B-WT:

MAP1LC3B wild-type

3′-UTR:

3′-Untranslated region

MAP1LC3B –MUT:

MAP1LC3B mutated-type

LAD:

The left anterior descending coronary artery

AI:

Apoptosis index

ANOVA:

Analysis of variance

References

  1. Hu SS, Kong LZ, Gao RL, Zhu ML, Wang W, Wang YJ, et al. Outline of the report on cardiovascular disease in China, 2010. Biomed Environ Sci. 2012;25(3):251–6. https://doi.org/10.3967/0895-3988.2012.03.001.

    Article  PubMed  Google Scholar 

  2. Armstrong PW, Gershlick AH, Goldstein P, Wilcox R, Danays T, Lambert Y, et al. Fibrinolysis or primary PCI in ST-segment elevation myocardial infarction. N Engl J Med. 2013;368(15):1379–87. https://doi.org/10.1056/NEJMoa1301092.

    Article  CAS  PubMed  Google Scholar 

  3. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med. 2013;368(21):2004–13. https://doi.org/10.1056/NEJMra1216063.

    Article  CAS  PubMed  Google Scholar 

  4. Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet. 2003;361(9351):13–20. https://doi.org/10.1016/S0140-6736(03)12113-7.

    Article  PubMed  Google Scholar 

  5. Cecconi F, Levine B. The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell. 2008;15(3):344–57. https://doi.org/10.1016/j.devcel.2008.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rabinovich-Nikitin I, Lieberman B, Martino TA, Kirshenbaum LA. Circadian-regulated cell death in cardiovascular diseases. Circulation. 2019;139(7):965–80. https://doi.org/10.1161/CIRCULATIONAHA.118.036550.

    Article  CAS  PubMed  Google Scholar 

  7. Li D, Wang J, Hou J, Fu J, Liu J, Lin R. Salvianolic acid B induced upregulation of miR-30a protects cardiac myocytes from ischemia/reperfusion injury. BMC Complement Altern Med. 2016;16:336. https://doi.org/10.1186/s12906-016-1275-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou LY, Zhai M, Huang Y, Xu S, An T, Wang YH, et al. The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/ FAM65B pathway. Cell Death Differ. 2019;26(7):1299–315. https://doi.org/10.1038/s41418-018-0206-4.

    Article  CAS  PubMed  Google Scholar 

  9. Rogov V, Dotsch V, Johansen T, Kirkin V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell. 2014;53(2):167–78. https://doi.org/10.1016/j.molcel.2013.12.014.

    Article  CAS  PubMed  Google Scholar 

  10. Othman EQ, Kaur G, Mutee AF, Muhammad TS, Tan ML. Immunohistochemical expression of MAP1LC3A and MAP1LC3B protein in breast carcinoma tissues. J Clin Lab Anal. 2009;23(4):249–58. https://doi.org/10.1002/jcla.20309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singh R, Cuervo AM. Autophagy in the cellular energetic balance. Cell Metab. 2011;13(5):495–504. https://doi.org/10.1016/j.cmet.2011.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, et al. miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics. 2017;7(3):664–76. https://doi.org/10.7150/thno.15162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hinkel R, Penzkofer D, Zuhlke S, Fischer A, Husada W, Xu QF, et al. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation. 2013;128(10):1066–75. https://doi.org/10.1161/CIRCULATIONAHA.113.001904.

    Article  CAS  PubMed  Google Scholar 

  14. Joladarashi D, Garikipati VNS, Thandavarayan RA, Verma SK, Mackie AR, Khan M, et al. Enhanced cardiac regenerative ability of stem cells after ischemia-reperfusion injury: role of human CD34+ Cells Deficient in MicroRNA-377. J Am Coll Cardiol. 2015;66(20):2214–26. https://doi.org/10.1016/j.jacc.2015.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Przyklenk K. microRNA-144: the “what” and “how” of remote ischemic conditioning? Basic Res Cardiol. 2014;109(5):429. https://doi.org/10.1007/s00395-014-0429-6.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee TL, Lee MH, Chen YC, Lee YC, Lai TC, Lin HY, et al. Vitamin D attenuates ischemia/reperfusion-induced cardiac injury by reducing mitochondrial fission and mitophagy. Front Pharmacol. 2020;11: 604700. https://doi.org/10.3389/fphar.2020.604700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lv X, Xu T, Wu Q, Zhou Y, Huang G, Xu Y, et al. 6-gingerol activates PI3K/Akt and inhibits apoptosis to attenuate myocardial ischemia/reperfusion injury. Evid Based Complement Altern Med. 2018;2018:9024034. https://doi.org/10.1155/2018/9024034.

    Article  Google Scholar 

  18. Yang CF. Clinical manifestations and basic mechanisms of myocardial ischemia/reperfusion injury. Ci ji yi xue za zhi = Tzu-Chi Med J. 2018;30(4):209–15. https://doi.org/10.4103/tcmj.tcmj_33_18.

    Article  Google Scholar 

  19. Sun T, Li MY, Li PF, Cao JM. MicroRNAs in cardiac autophagy: small molecules and big role. Cells. 2018. https://doi.org/10.3390/cells7080104.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ma S, Wang Y, Chen Y, Cao F. The role of the autophagy in myocardial ischemia/reperfusion injury. Biochem Biophys Acta. 2015;1852(2):271–6. https://doi.org/10.1016/j.bbadis.2014.05.010.

    Article  CAS  PubMed  Google Scholar 

  21. Yang J, He J, Ismail M, Tweeten S, Zeng F, Gao L, et al. HDAC inhibition induces autophagy and mitochondrial biogenesis to maintain mitochondrial homeostasis during cardiac ischemia/reperfusion injury. J Mol Cell Cardiol. 2019;130:36–48. https://doi.org/10.1016/j.yjmcc.2019.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Condello M, Pellegrini E, Caraglia M, Meschini S. Targeting autophagy to overcome human diseases. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20030725.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hang P, Zhao J, Su Z, Sun H, Chen T, Zhao L, et al. Choline inhibits ischemia-reperfusion-induced cardiomyocyte autophagy in rat myocardium by activating Akt/mTOR signaling. Cell Physiol Biochem. 2018;45(5):2136–44. https://doi.org/10.1159/000488049.

    Article  CAS  PubMed  Google Scholar 

  24. Su Q, Liu Y, Lv XW, Ye ZL, Sun YH, Kong BH, et al. Inhibition of lncRNA TUG1 upregulates miR-142-3p to ameliorate myocardial injury during ischemia and reperfusion via targeting HMGB1- and Rac1-induced autophagy. J Mol Cell Cardiol. 2019;133:12–25. https://doi.org/10.1016/j.yjmcc.2019.05.021.

    Article  CAS  PubMed  Google Scholar 

  25. Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: function, detection, and bioanalysis. Chem Rev. 2013;113(8):6207–33. https://doi.org/10.1021/cr300362f.

    Article  CAS  PubMed  Google Scholar 

  26. Gozuacik D, Akkoc Y, Ozturk DG, Kocak M. Autophagy-regulating microRNAs and cancer. Front Oncol. 2017;7:65. https://doi.org/10.3389/fonc.2017.00065.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kouhkan F, Hafizi M, Mobarra N, Mossahebi-Mohammadi M, Mohammadi S, Behmanesh M, et al. miRNAs: a new method for erythroid differentiation of hematopoietic stem cells without the presence of growth factors. Appl Biochem Biotechnol. 2014;172(4):2055–69. https://doi.org/10.1007/s12010-013-0633-0.

    Article  CAS  PubMed  Google Scholar 

  28. Tsuchiya S, Oku M, Imanaka Y, Kunimoto R, Okuno Y, Terasawa K, et al. MicroRNA-338-3p and microRNA-451 contribute to the formation of basolateral polarity in epithelial cells. Nucleic Acids Res. 2009;37(11):3821–7. https://doi.org/10.1093/nar/gkp255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alural B, Duran GA, Tufekci KU, Allmer J, Onkal Z, Tunali D, et al. EPO mediates neurotrophic, neuroprotective, anti-oxidant, and anti-apoptotic effects via downregulation of miR-451 and miR-885-5p in SH-SY5Y neuron-like cells. Front Immunol. 2014;5:475. https://doi.org/10.3389/fimmu.2014.00475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bai H, Wu S. miR-451: a novel biomarker and potential therapeutic target for cancer. Onco Targets Ther. 2019;12:11069–82. https://doi.org/10.2147/ott.s230963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song L, Su M, Wang S, Zou Y, Wang X, Wang Y, et al. MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. J Cell Mol Med. 2014;18(11):2266–74. https://doi.org/10.1111/jcmm.12380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bortnik S, Gorski SM. Clinical applications of autophagy proteins in cancer: from potential targets to biomarkers. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18071496.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Swaminathan B, Goikuria H, Vega R, Rodríguez-Antigüedad A, López Medina A, Freijo Mdel M, et al. Autophagic marker MAP1LC3B expression levels are associated with carotid atherosclerosis symptomatology. PLoS ONE. 2014;9(12): e115176. https://doi.org/10.1371/journal.pone.0115176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang C, Han H, Liu Z, Liu Y, Yin L, Cai J, et al. Activation of BNIP3-mediated mitophagy protects against renal ischemia-reperfusion injury. Cell Death Dis. 2019;10(9):677. https://doi.org/10.1038/s41419-019-1899-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their constructive comments. This work was supported by Natural Science Foundation of Guangxi (No.2018GXNSFDA281039, No.2018GXNSFAA050110, No. 2020GXNSFAA297009).

Funding

This work was supported by Natural Science Foundation of Guangxi (No.2018GXNSFDA281039, No.2018GXNSFAA050110, No. 2020GXNSFAA297009).

Author information

Authors and Affiliations

Authors

Contributions

Conception and study design: XWL. Data acquisition: ZFH, PPZ. Data analysis: QYQ. Manuscript drafting: YXH. Manuscript revising: TTX. All authors have read and approved the final version of this manuscript to be published.

Corresponding author

Correspondence to Tong-Tong Xu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, XW., He, ZF., Zhu, PP. et al. miR-451-3p alleviates myocardial ischemia/reperfusion injury by inhibiting MAP1LC3B-mediated autophagy. Inflamm. Res. 70, 1089–1100 (2021). https://doi.org/10.1007/s00011-021-01508-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01508-4

Keywords

Navigation