Skip to main content

Advertisement

Log in

PIM1 inhibition attenuated endotoxin-induced acute lung injury through modulating ELK3/ICAM1 axis on pulmonary microvascular endothelial cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The dysfunction of pulmonary microvascular endothelial cells (PMVECs) is one of the critical characteristics of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) induced by severe infection. PIM1 is a constitutively active serine/threonine kinase that is involved in multiple biological processes. However, the underlying correlation between PIM1 and PMVECs injury remains unclear. The main purpose of this study was to reveal roles of PIM1 and explore the potential mechanisms during the development of endotoxin-induced ALI induced by intraperitoneal LPS administration.

Materials and methods

PIM1 level in the lung tissues of endotoxin-induced ALI mice or plasma derived from cardiopulmonary bypass (CPB)-induced ALI patients were measured. The protective roles of PIM1 specific inhibitor SMI-4a on endotoxin-induced lung injuries were evaluated through histological, permeability, neutrophil infiltration and survival assessment. The relationship between PIM1 and ELK3/ICAM-1 axis was validated in vivo and vitro. The correlation between plasma PIM1 and indicative vascular endothelium injury biomarkers (PaO2/FiO2 ratio, Ang-II, E-selectin and PAI-1) levels derived from CPB-induced ALI patient were analyzed.

Results

PIM1 expression in the lung tissues was increased in the mice of endotoxin-induced ALI. The PIM1 specific inhibitor SMI-4a administration relieved the severity of endotoxin-induced ALI. More importantly, PIM1 modulates ICAM1 expression through regulating transcription factor ELK3 expression in vitro. Eventually, plasma PIM1 level was positively correlated with Ang-II and PAI-1 levels but negatively correlated with SpO2/FiO2 ratio among CPB induced ALI patients.

Conclusion

Our results indicated that PIM1 inhibition carried a protective role against endotoxin-induced ALI by modulating the ELK3/ICAM1 axis on PMVECs. PIM1 may be a potential therapeutic target for endotoxin-induced ALI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10. https://doi.org/10.1001/jama.2016.0287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5(1):18. https://doi.org/10.1038/s41572-019-0069-0.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pham T, Rubenfeld GD. Fifty years of research in ARDS. The epidemiology of acute respiratory distress syndrome. A 50th birthday review. Am J Respir Crit Care Med. 2017;195(7):860–70. https://doi.org/10.1164/rccm.201609-1773CP.

    Article  PubMed  Google Scholar 

  4. Matthay MA, McAuley DF, Ware LB. Clinical trials in acute respiratory distress syndrome: challenges and opportunities. Lancet Respir Med. 2017;5(6):524–34. https://doi.org/10.1016/S2213-2600(17)30188-1.

    Article  PubMed  Google Scholar 

  5. Fanelli V, Ranieri VM. Mechanisms and clinical consequences of acute lung injury. Ann Am Thorac Soc. 2015;12(Suppl 1):S3-8. https://doi.org/10.1513/AnnalsATS.201407-340MG.

    Article  PubMed  Google Scholar 

  6. Bachofen M, Weibel ER. Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin Chest Med. 1982;3(1):35–56.

    CAS  PubMed  Google Scholar 

  7. Park I, Kim M, Choe K, Song E, Seo H, Hwang Y, et al. Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury. Eur Respir J. 2019. https://doi.org/10.1183/13993003.00786-2018.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li H, Hao Y, Yang LL, Wang XY, Li XY, Bhandari S, et al. MCTR1 alleviates lipopolysaccharide-induced acute lung injury by protecting lung endothelial glycocalyx. J Cell Physiol. 2020. https://doi.org/10.1002/jcp.29628.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bhattacharya J, Matthay MA. Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annu Rev Physiol. 2013;75:593–615. https://doi.org/10.1146/annurev-physiol-030212-183756.

    Article  CAS  PubMed  Google Scholar 

  10. Minamino T, Komuro I. Regeneration of the endothelium as a novel therapeutic strategy for acute lung injury. J Clin Investig. 2006;116(9):2316–9. https://doi.org/10.1172/JCI29637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu X, Zou Y, Wang B, Zhu J, Chen Y, Wang L, et al. Blockade of CXC chemokine receptor 3 on endothelial cells protects against sepsis-induced acute lung injury. J Surg Res. 2016;204(2):288–96. https://doi.org/10.1016/j.jss.2016.04.067.

    Article  CAS  PubMed  Google Scholar 

  12. Huertas A, Guignabert C, Barbera JA, Bartsch P, Bhattacharya J, Bhattacharya S, et al. Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases: highlights from basic research to therapy. Eur Respir J. 2018. https://doi.org/10.1183/13993003.00745-2017.

    Article  PubMed  Google Scholar 

  13. Zou Y, Bao S, Wang F, Guo L, Zhu J, Wang J, et al. FN14 blockade on pulmonary microvascular endothelial cells improves the outcome of sepsis-induced acute lung injury. Shock. 2018;49(2):213–20. https://doi.org/10.1097/SHK.0000000000000915.

    Article  CAS  PubMed  Google Scholar 

  14. Braso-Maristany F, Filosto S, Catchpole S, Marlow R, Quist J, Francesch-Domenech E, et al. PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer. Nat Med. 2016;22(11):1303–13. https://doi.org/10.1038/nm.4198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ. Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett. 2004;571(1–3):43–9. https://doi.org/10.1016/j.febslet.2004.06.050.

    Article  CAS  PubMed  Google Scholar 

  16. Bhattacharya N, Wang Z, Davitt C, McKenzie IF, Xing PX, Magnuson NS. Pim-1 associates with protein complexes necessary for mitosis. Chromosoma. 2002;111(2):80–95. https://doi.org/10.1007/s00412-002-0192-6.

    Article  CAS  PubMed  Google Scholar 

  17. Saris CJ, Domen J, Berns A. The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J. 1991;10(3):655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Asati V, Mahapatra DK, Bharti SK. PIM kinase inhibitors: structural and pharmacological perspectives. Eur J Med Chem. 2019;172:95–108. https://doi.org/10.1016/j.ejmech.2019.03.050.

    Article  CAS  PubMed  Google Scholar 

  19. Katsube A, Hayashi H, Kusuhara H. Pim-1L protects cell surface-resident ABCA1 from lysosomal degradation in hepatocytes and thereby regulates plasma high-density lipoprotein level. Arterioscler Thromb Vasc Biol. 2016;36(12):2304–14. https://doi.org/10.1161/ATVBAHA.116.308472.

    Article  CAS  PubMed  Google Scholar 

  20. Xie Y, Xu K, Linn DE, Yang X, Guo Z, Shimelis H, et al. The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells. J Biol Chem. 2008;283(6):3349–56. https://doi.org/10.1074/jbc.M707773200.

    Article  CAS  PubMed  Google Scholar 

  21. Bitrian V, Trullas J. Molecular dynamics study of polarizable ion models for molten AgBr. J Phys Chem B. 2006;110(14):7490–9. https://doi.org/10.1021/jp056818u.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao W, Qiu R, Li P, Yang J. PIM1: a promising target in patients with triple-negative breast cancer. Med Oncol. 2017;34(8):142. https://doi.org/10.1007/s12032-017-0998-y.

    Article  CAS  PubMed  Google Scholar 

  23. Narlik-Grassow M, Blanco-Aparicio C, Carnero A. The PIM family of serine/threonine kinases in cancer. Med Res Rev. 2014;34(1):136–59. https://doi.org/10.1002/med.21284.

    Article  CAS  PubMed  Google Scholar 

  24. Kim K, Kim JH, Youn BU, Jin HM, Kim N. Pim-1 regulates RANKL-induced osteoclastogenesis via NF-kappaB activation and NFATc1 induction. J Immunol. 2010;185(12):7460–6. https://doi.org/10.4049/jimmunol.1000885.

    Article  CAS  PubMed  Google Scholar 

  25. Lim R, Barker G, Lappas M. Inhibition of PIM1 kinase attenuates inflammation-induced pro-labour mediators in human foetal membranes in vitro. Mol Hum Reprod. 2017;23(6):428–40. https://doi.org/10.1093/molehr/gax013.

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Cao Y, Liu Y, Zhang X, Ji F, Li J, et al. PIM1 inhibitor SMI-4a attenuated lipopolysaccharide-induced acute lung injury through suppressing macrophage inflammatory responses via modulating p65 phosphorylation. Int Immunopharmacol. 2019;73:568–74. https://doi.org/10.1016/j.intimp.2019.05.040.

    Article  CAS  PubMed  Google Scholar 

  27. Zou Y, Cao Y, Liu Y, Zhang X, Li J, Xiong Y. The role of dorsal root ganglia PIM1 in peripheral nerve injury-induced neuropathic pain. Neurosci Lett. 2019;709:134375. https://doi.org/10.1016/j.neulet.2019.134375.

    Article  CAS  PubMed  Google Scholar 

  28. Singh N, Li L. Reduced oxidative tissue damage during endotoxemia in IRAK-1 deficient mice. Mol Immunol. 2012;50(4):244–52. https://doi.org/10.1016/j.molimm.2012.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44(5):725–38. https://doi.org/10.1165/rcmb.2009-0210ST.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Radu M, Chernoff J. An in vivo assay to test blood vessel permeability. J Vis Exp. 2013;73:e50062. https://doi.org/10.3791/50062.

    Article  Google Scholar 

  31. Xing Z, Han J, Hao X, Wang J, Jiang C, Hao Y, et al. Immature monocytes contribute to cardiopulmonary bypass-induced acute lung injury by generating inflammatory descendants. Thorax. 2017;72(3):245–55. https://doi.org/10.1136/thoraxjnl-2015-208023.

    Article  PubMed  Google Scholar 

  32. Carney DE, Lutz CJ, Picone AL, Gatto LA, Ramamurthy NS, Golub LM, et al. Matrix metalloproteinase inhibitor prevents acute lung injury after cardiopulmonary bypass. Circulation. 1999;100(4):400–6. https://doi.org/10.1161/01.cir.100.4.400.

    Article  CAS  PubMed  Google Scholar 

  33. Chen X, Jiang J, Wu X, Li J, Li S. Plasma Cold-Inducible RNA-binding protein predicts lung dysfunction after cardiovascular surgery following cardiopulmonary bypass: a prospective observational study. Med Sci Monit. 2019;25:3288–97. https://doi.org/10.12659/MSM.914318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol. 2011;6:147–63. https://doi.org/10.1146/annurev-pathol-011110-130158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Donnelly SC, Haslett C, Dransfield I, Robertson CE, Carter DC, Ross JA, et al. Role of selectins in development of adult respiratory distress syndrome. Lancet. 1994;344(8917):215–9. https://doi.org/10.1016/s0140-6736(94)92995-5.

    Article  CAS  PubMed  Google Scholar 

  36. Hu G, Vogel SM, Schwartz DE, Malik AB, Minshall RD. Intercellular adhesion molecule-1-dependent neutrophil adhesion to endothelial cells induces caveolae-mediated pulmonary vascular hyperpermeability. Circ Res. 2008;102(12):e120–31. https://doi.org/10.1161/CIRCRESAHA.107.167486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tan WSD, Liao W, Zhou S, Mei D, Wong WF. Targeting the renin-angiotensin system as novel therapeutic strategy for pulmonary diseases. Curr Opin Pharmacol. 2018;40:9–17. https://doi.org/10.1016/j.coph.2017.12.002.

    Article  CAS  PubMed  Google Scholar 

  38. Chen YH, Layne MD, Chung SW, Ejima K, Baron RM, Yet SF, et al. Elk-3 is a transcriptional repressor of nitric-oxide synthase 2. J Biol Chem. 2003;278(41):39572–7. https://doi.org/10.1074/jbc.M308179200.

    Article  CAS  PubMed  Google Scholar 

  39. Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116(17):1896–906. https://doi.org/10.1161/CIRCULATIONAHA.106.684852.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (81571877) and the Natural Science Foundation of Shanghai (Scientific and Technological innovation Action Plan, 20ZR445700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Zou or Jinbao Li.

Ethics declarations

Conflict of interest

The authors declared no conflicts of interest.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 503 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Chen, X., Liu, Y. et al. PIM1 inhibition attenuated endotoxin-induced acute lung injury through modulating ELK3/ICAM1 axis on pulmonary microvascular endothelial cells. Inflamm. Res. 70, 89–98 (2021). https://doi.org/10.1007/s00011-020-01420-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01420-3

Keywords

Navigation