Skip to main content
Log in

The α7-nAChR/heme oxygenase-1/carbon monoxide pathway mediates the nicotine counteraction of renal inflammation and vasoconstrictor hyporeactivity in endotoxic male rats

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The objective of the study was to test the hypothesis that nicotine guards against endotoxemia-associated renal inflammation and vasoconstrictor dysfunction via the activation of α7-nicotinic acetylcholine receptors (α7-nAChRs)/heme oxygenase-1 (HO-1) cascade.

Materials

91 male and female rats were included in the study.

Treatments

Lipopolysaccharide (LPS, 5 mg kg−1), nicotine (0.5–2 mg kg−1), pentoxifylline (PTX, TNFα inhibitor, 3 mg kg−1), methyllycaconitine (MLA, α7-nAChR blocker), zinc protoporphyrin (ZnPP, HO-1 inhibitor), hemin (HO-1 inducer), tricarbonyldichlororuthenium (carbon monoxide-releasing molecule, CORM-2) or bilirubin was administered before LPS.

Methods

Isolated perfused kidney was used to evaluate renal vasoconstriction and immunohistochemistry to assess inflammatory cytokines.

Results

LPS reduced renal vasoconstrictions induced by phenylephrine or vasopressin in perfused kidneys of male, but not female, rats. Higher elevations in serum interleukin-1β and renal expressions of inducible nitric oxide synthase (iNOS) and nuclear factor-κB (NF-κB) were observed in LPS-treated male rats, whereas greater HO-1 expression was evident in endotoxic female rats. LPS effects were reversed by nicotine or PTX. Further, the favorable nicotine actions were (i) diminished by MLA or ZnPP and (ii) replicated by hemin or CORM-2, but not bilirubin, and (iii) associated with exaggerated and MLA-sensitive increases in HO-1 expression.

Conclusions

α7-nAChR/HO-1/CO signaling mediates nicotine protection against renal inflammation and vasoconstrictor hyporeactivity in endotoxic male rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Julou-Schaeffer G, Gray GA, Fleming I, Schott C, Parratt JR, Stoclet JC. Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway. Am J Physiol. 1990;259:H1038–H10431043. https://doi.org/10.1152/ajpheart.1990.259.4.H1038.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang S, Cui N, Li S, Guo L, Wu Y, Zhu D, et al. Interception of the endotoxin-induced arterial hyporeactivity to vasoconstrictors. Vascul Pharmacol. 2014;62:15–23. https://doi.org/10.1016/j.vph.2014.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hendriks-Balk MC, Tjon-Atsoi M, Hajji N, Alewijnse AE, Peters SL. LPS differentially affects vasoconstrictor responses: a potential role for RGS16? J Physiol Biochem. 2009;65:71–83. https://doi.org/10.1007/BF03165971.

    Article  CAS  PubMed  Google Scholar 

  4. Tarpey SB, Bennett T, Randall MD, Gardiner SM. Differential effects of endotoxaemia on pressor and vasoconstrictor actions of angiotensin II and arginine vasopressin in conscious rats. Br J Pharmacol. 1998;123:1367–74. https://doi.org/10.1038/sj.bjp.0701751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Souza P, Schulz R, da Silva-Santos JE. Matrix metalloproteinase inhibitors prevent sepsis-induced refractoriness to vasoconstrictors in the cecal ligation and puncture model in rats. Eur J Pharmacol. 2015;765:164–70. https://doi.org/10.1016/j.ejphar.2015.08.030.

    Article  CAS  PubMed  Google Scholar 

  6. El-Awady MS, Smirnov SV, Watson ML. Voltage-independent calcium channels mediate lipopolysaccharide-induced hyporeactivity to endothelin-1 in the rat aorta. Am J Physiol Heart Circ Physiol. 2009;296:H1408–H14151415. https://doi.org/10.1152/ajpheart.01305.2008.

    Article  CAS  PubMed  Google Scholar 

  7. Bennett T, Mahajan RP, March JE, Kemp PA, Gardiner SM. Regional and temporal changes in cardiovascular responses to norepinephrine and vasopressin during continuous infusion of lipopolysaccharide in conscious rats. Br J Anaesth. 2004;93:400–7. https://doi.org/10.1093/bja/aeh214.

    Article  CAS  PubMed  Google Scholar 

  8. Boffa JJ, Arendshorst WJ. Maintenance of renal vascular reactivity contributes to acute renal failure during endotoxemic shock. J Am Soc Nephrol. 2005;16:117–24. https://doi.org/10.1681/asn.2004060441.

    Article  PubMed  Google Scholar 

  9. Chuang C-L, Huang H-C, Chang C-C, Lee F-Y, Wu J-C, Lee J-Y, et al. Lipopolysaccharide enhanced renal vascular response to endothelin-1 through ETA overexpression in portal hypertensive rats. J Gastroenterol Hepatol. 2014;30:199–207. https://doi.org/10.1111/jgh.12670.

    Article  CAS  Google Scholar 

  10. Farmer MR, Roberts RE, Gardiner SM, Ralevic V. Effects of in vivo lipopolysaccharide infusion on vasoconstrictor function of rat isolated mesentery, kidney, and aorta. J Pharmacol Exp Ther. 2003;306:538. https://doi.org/10.1124/jpet.103.051805.

    Article  CAS  PubMed  Google Scholar 

  11. Guarido KL, Gonçalves RPM, Júnior AG, da Silva-Santos JE. Increased activation of the Rho-A/Rho-kinase pathway in the renal vascular system is responsible for the enhanced reactivity to exogenous vasopressin in endotoxemic rats. Crit Care Med. 2014;42:e461–e471471. https://doi.org/10.1097/ccm.0000000000000313.

    Article  CAS  PubMed  Google Scholar 

  12. Li T, Croce K, Winquist RJ. Regional differences in the effects of septic shock on vascular reactivity in the rabbit. J Pharmacol Exp Ther. 1992;261:959.

    CAS  PubMed  Google Scholar 

  13. Piepot HA, Groeneveld ABJ, Van Lambalgen AA, Sipkema P. The role of inducible nitric oxide synthase in lipopolysaccharide-mediated hyporeactivity to vasoconstrictors differs among isolated rat arteries. Clin Sci (Lond). 2002;102:297. https://doi.org/10.1042/CS20010254.

    Article  CAS  PubMed  Google Scholar 

  14. Yamaguchi N, Jesmin S, Zaedi S, Shimojo N, Maeda S, Gando S, et al. Time-dependent expression of renal vaso-regulatory molecules in LPS-induced endotoxemia in rat. Peptides. 2006;27:2258–70. https://doi.org/10.1016/j.peptides.2006.03.025.

    Article  CAS  Google Scholar 

  15. Angele MK, Pratschke S, Hubbard WJ, Chaudry IH. Gender differences in sepsis: cardiovascular and immunological aspects. Virulence. 2014;5:12–9. https://doi.org/10.4161/viru.26982.

    Article  PubMed  Google Scholar 

  16. Goncalves RP, Guarido KL, Assreuy J, da Silva-Santos JE. Gender-specific differences in the in situ cardiac function of endotoxemic rats detected by pressure-volume catheter. Shock. 2014;42:415–23. https://doi.org/10.1097/shk.0000000000000226.

    Article  CAS  PubMed  Google Scholar 

  17. Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest. 2007;117:289–96. https://doi.org/10.1172/JCI30555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kessler W, Diedrich S, Menges P, Ebker T, Nielson M, Partecke LI et al. The Role of the Vagus Nerve: Modulation of the Inflammatory Reaction in Murine Polymicrobial Sepsis. Mediators Inflamm. 2012 10.1155/2012/467620.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421:384–8. https://doi.org/10.1038/nature01339.

    Article  CAS  Google Scholar 

  20. Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004;10:1216–21. https://doi.org/10.1038/nm1124.

    Article  CAS  PubMed  Google Scholar 

  21. Yamada-Nomoto K, Yoshino O, Akiyama I, Ushijima A, Ono Y, Shima T, et al. Alpha-7 nicotinic acetylcholine receptor (nAChR) agonist inhibits the development of endometriosis by regulating inflammation. Am J Reprod Immunol. 2016;76:491–8. https://doi.org/10.1111/aji.12592.

    Article  CAS  PubMed  Google Scholar 

  22. Sallam MY, El-Gowilly SM, El-Gowelli HM, El-Lakany MA, El-Mas MM. Additive counteraction by alpha7 and alpha4beta2-nAChRs of the hypotension and cardiac sympathovagal imbalance evoked by endotoxemia in male rats. Eur J Pharmacol. 2018;834:36–44. https://doi.org/10.1016/j.ejphar.2018.07.008.

    Article  CAS  PubMed  Google Scholar 

  23. Chatterjee PK, Yeboah MM, Dowling O, Xue X, Powell SR, Al-Abed Y, et al. Nicotinic acetylcholine receptor agonists attenuate septic acute kidney injury in mice by suppressing inflammation and proteasome activity. PLoS ONE. 2012;7:e35361. https://doi.org/10.1371/journal.pone.0035361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Singh N, Ahmad Z, Baid N, Kumar A. Host heme oxygenase-1: Friend or foe in tackling pathogens? IUBMB Life. 2018. https://doi.org/10.1002/iub.1868.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chung SW, Liu X, Macias AA, Baron RM, Perrella MA. Heme oxygenase-1-derived carbon monoxide enhances the host defense response to microbial sepsis in mice. J Clin Invest. 2008;118:239–47. https://doi.org/10.1172/jci32730.

    Article  CAS  PubMed  Google Scholar 

  26. Lanone S, Bloc S, Foresti R, Almolki A, Taille C, Callebert J, et al. Bilirubin decreases nos2 expression via inhibition of NAD(P)H oxidase: implications for protection against endotoxic shock in rats. FASEB J. 2005;19:1890–2. https://doi.org/10.1096/fj.04-2368fje.

    Article  CAS  PubMed  Google Scholar 

  27. Kang K, Nan C, Fei D, Meng X, Liu W, Zhang W, et al. Heme oxygenase 1 modulates thrombomodulin and endothelial protein C receptor levels to attenuate septic kidney injury. Shock. 2013;40:136–43. https://doi.org/10.1097/SHK.0b013e31829d23f5.

    Article  CAS  PubMed  Google Scholar 

  28. Yu J, Shi J, Wang D, Dong S, Zhang Y, Wang M, et al. Heme Oxygenase-1/Carbon Monoxide-regulated Mitochondrial Dynamic Equilibrium Contributes to the Attenuation of Endotoxin-induced Acute Lung Injury in Rats and in Lipopolysaccharide-activated Macrophages. Anesthesiology. 2016;125:1190–201. https://doi.org/10.1097/aln.0000000000001333.

    Article  CAS  PubMed  Google Scholar 

  29. Park JS, Choi HS, Yim SY, Lee SM. Heme Oxygenase-1 protects the liver from septic injury by modulating TLR4-mediated mitochondrial quality control in mice. Shock. 2018;50:209–18. https://doi.org/10.1097/shk.0000000000001020.

    Article  CAS  PubMed  Google Scholar 

  30. Tracz MJ, Juncos JP, Grande JP, Croatt AJ, Ackerman AW, Rajagopalan G, et al. Renal hemodynamic, inflammatory, and apoptotic responses to lipopolysaccharide in HO-1(−/−) mice. Am J Pathol. 2007;170:1820–30. https://doi.org/10.2353/ajpath.2007.061093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsoyi K, Jang HJ, Kim JW, Chang HK, Lee YS, Pae HO, et al. Stimulation of alpha7 nicotinic acetylcholine receptor by nicotine attenuates inflammatory response in macrophages and improves survival in experimental model of sepsis through heme oxygenase-1 induction. Antioxid Redox Signal. 2011;14:2057–70. https://doi.org/10.1089/ars.2010.3555.

    Article  CAS  PubMed  Google Scholar 

  32. Uddin MJ, Joe Y, Zheng M, Blackshear PJ, Ryter SW, Park JW, et al. A functional link between heme oxygenase-1 and tristetraprolin in the anti-inflammatory effects of nicotine. Free Radic Biol Med. 2013;65:1331–9. https://doi.org/10.1016/j.freeradbiomed.2013.09.027.

    Article  CAS  PubMed Central  Google Scholar 

  33. Wedn AM, El-Gowilly SM, El-Mas MM. Nicotine improves survivability, hypotension, and impaired adenosinergic renal vasodilations in endotoxic rats: role of alpha7-Nachrs/HO-1 pathway. Shock. 2019. https://doi.org/10.1097/shk.0000000000001384.

    Article  PubMed  Google Scholar 

  34. Avni T, Lador A, Lev S, Leibovici L, Paul M, Grossman A. Vasopressors for the Treatment of Septic Shock: Systematic Review and Meta-Analysis. PLoS ONE. 2015;10:e0129305. https://doi.org/10.1371/journal.pone.0129305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wagener G, Bakker J. Vasopressin in cirrhosis and sepsis: physiology and clinical implications. Minerva Anestesiol. 2015;81:1377–83.

    CAS  PubMed  Google Scholar 

  36. Wedn AM, El-Gowilly SM, El-Mas MM. The α7-nAChRs/heme oxygenase/carbon monoxide pathway arbitrates nicotine counteraction of the inflammatory and renal vasoconstrictor hyporeactivity in endotoxic rats. FASEB J. 2018;32:568.9-.9.10.1096/fasebj.2018.32.1_supplement.568.9. URL: https://www.fasebj.org/doi/abs/10.1096/fasebj.2018.32.1_supplement.568.9.

  37. Bauman AW, Clarkson TW, Miles EM. Functional evaluation of isolated perfused rat kidney. J Appl Physiol. 1963;18:1239–46. https://doi.org/10.1152/jappl.1963.18.6.1239.

    Article  CAS  PubMed  Google Scholar 

  38. Bahlmann J, Giebisch G, Ochwadt B, Schoeppe W. Micropuncture study of isolated perfused rat kidney. Am J Physiol. 1967;212:77–82. https://doi.org/10.1152/ajplegacy.1967.212.1.77.

    Article  CAS  PubMed  Google Scholar 

  39. Malik KU, McGiff JC. Modulation by prostaglandins of adrenergic transmission in the isolated perfused rabbit and rat kidney. Circ Res. 1975;36:599–609. https://doi.org/10.1161/01.res.36.5.599.

    Article  CAS  PubMed  Google Scholar 

  40. Helmy MW, El-Gowelli HM, Ali RM, El-Mas MM. Endothelin ETA receptor/lipid peroxides/COX-2/TGF-beta1 signalling underlies aggravated nephrotoxicity caused by cyclosporine plus indomethacin in rats. Br J Pharmacol. 2015;172:4291–302. https://doi.org/10.1111/bph.13199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. El-Mas MM, Zhang J, Abdel-Rahman AA. Upregulation of vascular inducible nitric oxide synthase mediates the hypotensive effect of ethanol in conscious female rats. J Appl Physiol. 2006;100:1011–8. https://doi.org/10.1152/japplphysiol.01058.2005.

    Article  CAS  PubMed  Google Scholar 

  42. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676. https://doi.org/10.1038/nmeth.2019.

    Article  CAS  PubMed  Google Scholar 

  43. Reddy MM, Mahipal SV, Subhashini J, Reddy MC, Roy KR, Reddy GV, et al. Bacterial lipopolysaccharide-induced oxidative stress in the impairment of steroidogenesis and spermatogenesis in rats. Reprod Toxicol. 2006;22:493–500. https://doi.org/10.1016/j.reprotox.2006.03.003.

    Article  CAS  PubMed  Google Scholar 

  44. El-Mas MM, El-Gowelli HM, El-Gowilly SM, Fouda MA, Helmy MM. Estrogen provokes the depressant effect of chronic nicotine on vagally mediated reflex chronotropism in female rats. J Pharmacol Exp Ther. 2012;342:568–75. https://doi.org/10.1124/jpet.112.191940.

    Article  CAS  PubMed  Google Scholar 

  45. Sallam MY, El-Gowilly SM, Abdel-Galil AG, El-Mas MM. Modulation by Central MAPKs/PI3K/sGc of the TNF-alpha/iNOS-dependent hypotension and compromised cardiac autonomic control in endotoxic rats. J Cardiovasc Pharmacol. 2016;68:171–81. https://doi.org/10.1097/fjc.0000000000000400.

    Article  CAS  PubMed  Google Scholar 

  46. Wu CC, Liao MH, Chen SJ, Yen MH. Pentoxifylline improves circulatory failure and survival in murine models of endotoxaemia. Eur J Pharmacol. 1999;373:41–9. https://doi.org/10.1016/s0014-2999(99)00265-4.

    Article  CAS  PubMed  Google Scholar 

  47. Larsson A, Svensson L, Soderpalm B, Engel JA. Role of different nicotinic acetylcholine receptors in mediating behavioral and neurochemical effects of ethanol in mice. Alcohol. 2002;28:157–67.

    Article  CAS  Google Scholar 

  48. Magierowska K, Magierowski M, Surmiak M, Adamski J, Mazur-Bialy AI, Pajdo R, et al. The protective role of carbon monoxide (CO) produced by Heme oxygenases and derived from the CO-releasing molecule CORM-2 in the pathogenesis of stress-induced gastric lesions: evidence for non-involvement of nitric oxide (NO). Int J Mol Sci. 2016;17:442. https://doi.org/10.3390/ijms17040442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Khan A, Jamwal S, Bijjem KR, Prakash A, Kumar P. Neuroprotective effect of hemeoxygenase-1/glycogen synthase kinase-3beta modulators in 3-nitropropionic acid-induced neurotoxicity in rats. Neuroscience. 2015;287:66–77. https://doi.org/10.1016/j.neuroscience.2014.12.018.

    Article  CAS  PubMed  Google Scholar 

  50. Hervera A, Leanez S, Motterlini R, Pol O. Treatment with carbon monoxide-releasing molecules and an HO-1 inducer enhances the effects and expression of micro-opioid receptors during neuropathic pain. Anesthesiology. 2013;118:1180–97. https://doi.org/10.1097/ALN.0b013e318286d085.

    Article  CAS  PubMed  Google Scholar 

  51. Kirkby K, Baylis C, Agarwal A, Croker B, Archer L, Adin C. Intravenous bilirubin provides incomplete protection against renal ischemia-reperfusion injury in vivo. Am J Physiol Renal Physiol. 2007;292:F888–F89494. https://doi.org/10.1152/ajprenal.00064.2006.

    Article  CAS  PubMed  Google Scholar 

  52. El-Lakany MA, Fouda MA, El-Gowelli HM, El-Gowilly SM, El-Mas MM. Gonadal hormone receptors underlie the resistance of female rats to inflammatory and cardiovascular complications of endotoxemia. Eur J Pharmacol. 2018;823:41–8. https://doi.org/10.1016/j.ejphar.2018.01.051.

    Article  CAS  PubMed  Google Scholar 

  53. Poole B, Wang W, Chen YC, Zolty E, Falk S, Mitra A, et al. Role of heme oxygenase-1 in endotoxemic acute renal failure. Am J Physiol Renal Physiol. 2005;289:F1382–F13851385. https://doi.org/10.1152/ajprenal.00402.2004.

    Article  CAS  PubMed  Google Scholar 

  54. Wiesel P, Patel AP, DiFonzo N, Marria PB, Sim CU, Pellacani A, et al. Endotoxin-induced mortality is related to increased oxidative stress and end-organ dysfunction, not refractory hypotension, in heme oxygenase-1-deficient mice. Circulation. 2000;102:3015–22. https://doi.org/10.1161/01.CIR.102.24.3015.

    Article  CAS  PubMed  Google Scholar 

  55. Toth B, Yokoyama Y, Kuebler JF, Schwacha MG, Rue LW 3rd, Bland KI, et al. Sex differences in hepatic heme oxygenase expression and activity following trauma and hemorrhagic shock. Arch Surg. 2003;138:1375–82. https://doi.org/10.1001/archsurg.138.12.1375.

    Article  CAS  PubMed  Google Scholar 

  56. Bao J, Liu Y, Yang J, Gao Q, Shi SQ, Garfield RE, et al. Nicotine inhibits LPS-induced cytokine production and leukocyte infiltration in rat placenta. Placenta. 2016;39:77–83. https://doi.org/10.1016/j.placenta.2016.01.015.

    Article  CAS  Google Scholar 

  57. Wyska E. Pharmacokinetic-Pharmacodynamic modeling of methylxanthine derivatives in mice challenged with high-dose lipopolysaccharide. Pharmacology. 2010;85:264–71. https://doi.org/10.1159/000288734.

    Article  CAS  PubMed  Google Scholar 

  58. Ji Q, Zhang L, Jia H, Yang J, Xu J. Pentoxifylline inhibits endotoxin-induced NF-kappa B activation and associated production of proinflammatory cytokines. Ann Clin Lab Sci. 2004;34:427–36.

    CAS  PubMed  Google Scholar 

  59. Katoue MG, Khan I, Oriowo MA. Increased expression and activity of heme oxygenase-2 in pregnant rat aorta is not involved in attenuated vasopressin-induced contraction. Naunyn Schmiedebergs Arch Pharmacol. 2005;372:220–7. https://doi.org/10.1007/s00210-005-0018-1.

    Article  CAS  PubMed  Google Scholar 

  60. Di Pascoli M, Zampieri F, Quarta S, Sacerdoti D, Merkel C, Gatta A, et al. Heme oxygenase regulates renal arterial resistance and sodium excretion in cirrhotic rats. J Hepatol. 2011;54:258–64. https://doi.org/10.1016/j.jhep.2010.08.013.

    Article  CAS  PubMed  Google Scholar 

  61. Kaide J, Zhang F, Wei Y, Wang W, Gopal VR, Falck JR, et al. Vascular CO counterbalances the sensitizing influence of 20-HETE on agonist-induced vasoconstriction. Hypertension. 2004;44:210–6. https://doi.org/10.1161/01.HYP.0000135658.57547.bb.

    Article  CAS  PubMed  Google Scholar 

  62. Hosur V, Loring RH. alpha4beta2 nicotinic receptors partially mediate anti-inflammatory effects through Janus kinase 2-signal transducer and activator of transcription 3 but not calcium or cAMP signaling. Mol Pharmacol. 2011;79:167–74. https://doi.org/10.1124/mol.110.066381.

    Article  CAS  PubMed  Google Scholar 

  63. Kanashiro A, Sônego F, Ferreira RG, Castanheira FV, Leite CA, Borges VF, et al. Therapeutic potential and limitations of cholinergic anti-inflammatory pathway in sepsis. Pharmacol Res. 2017;117:1–8. https://doi.org/10.1016/j.phrs.2016.12.014.

    Article  CAS  PubMed  Google Scholar 

  64. Ryter SW, Choi AM. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res. 2016;167:7–34. https://doi.org/10.1016/j.trsl.2015.06.011.

    Article  CAS  PubMed  Google Scholar 

  65. Adin CA, Croker BP, Agarwal A. Protective effects of exogenous bilirubin on ischemia-reperfusion injury in the isolated, perfused rat kidney. Am J Physiol Renal Physiol. 2005;288:F778–F784. https://doi.org/10.1152/ajprenal.00215.2004.

    Article  CAS  PubMed  Google Scholar 

  66. Boon AC, Bulmer AC, Coombes JS, Fassett RG. Circulating bilirubin and defense against kidney disease and cardiovascular mortality: mechanisms contributing to protection in clinical investigations. Am J Physiol Renal Physiol. 2014;307:F123–F136136. https://doi.org/10.1152/ajprenal.00039.2014.

    Article  CAS  PubMed  Google Scholar 

  67. Fredenburgh LE, Merz AA, Cheng S. Haeme oxygenase signalling pathway: implications for cardiovascular disease. Eur Heart J. 2015;36:1512–8. https://doi.org/10.1093/eurheartj/ehv114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu XM, Chapman GB, Wang H, Durante W. Adenovirus-mediated heme oxygenase-1 gene expression stimulates apoptosis in vascular smooth muscle cells. Circulation. 2002;105:79–84 10.1161/hc0102.101369.

    Article  CAS  Google Scholar 

  69. Liu XM, Chapman GB, Peyton KJ, Schafer AI, Durante W. Carbon monoxide inhibits apoptosis in vascular smooth muscle cells. Cardiovasc Res. 2002;55:396–405 10.1016/s0008-63630200410-8.

    Article  CAS  Google Scholar 

  70. Johnson FK, Johnson RA. Carbon monoxide promotes endothelium-dependent constriction of isolated gracilis muscle arterioles. Am J Physiol Regul Integr Comp Physiol. 2003;285:R536–R541541. https://doi.org/10.1152/ajpregu.00624.2002.

    Article  PubMed  Google Scholar 

  71. Ishikawa M, Kajimura M, Adachi T, Maruyama K, Makino N, Goda N, et al. Carbon monoxide from heme oxygenase-2 Is a tonic regulator against NO-dependent vasodilatation in the adult rat cerebral microcirculation. Circ Res. 2005;97:e104–e114114. https://doi.org/10.1161/01.RES.0000196681.34485.ec.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Science and Technology Development Fund, Egypt (STDF Grant No. 14895).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud M. El-Mas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics of animal investigations All experimental techniques and animal manipulations carried out in this study were done in accordance with the institutional guidelines on the care and use of laboratory animals and were approved by the Animal Care and Use Committee of the Faculty of Pharmacy, Alexandria University (ACUC project # 28/2014). This article does not contain any studies with human participants performed by any of the authors.

Additional information

Responsible Editor: Dr. John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wedn, A.M., El-Gowilly, S.M. & El-Mas, M.M. The α7-nAChR/heme oxygenase-1/carbon monoxide pathway mediates the nicotine counteraction of renal inflammation and vasoconstrictor hyporeactivity in endotoxic male rats. Inflamm. Res. 69, 217–231 (2020). https://doi.org/10.1007/s00011-019-01309-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-019-01309-w

Keywords

Navigation