Skip to main content

Advertisement

Log in

Reactive oxygen species mediate Jak2/Stat3 activation and IL-8 expression in pulmonary epithelial cells stimulated with lipid-associated membrane proteins from Mycoplasma pneumoniae

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To investigate the involvement of reactive oxygen species (ROS) in the activation of Janus kinase2 (Jak2)/signal transducers and activators of transcription3 (Stat3), and IL-8 expression in pulmonary epithelial cells stimulated with lipid-associated membrane proteins (LAMP) from Mycoplasma pneumoniae using a known antioxidant, N-acetylcysteine (NAC).

Methods

Pulmonary epithelial A549 cells were treated with or without NAC in the presence or absence of LAMP. Intracellular ROS levels were detected by fluorescent analysis for fluorescent dichlorofluorescein. mRNA expression of IL-8 was analyzed by reverse transcription-polymerase chain reaction. IL-8 protein in the medium was determined by enzyme-linked immunosorbent assay. Activation of Jak2/Stat3 was determined by the increases in phospho-specific forms of Jak2/Stat3 compared to total forms of Jak2/Stat3 by western blotting. Stat3–DNA binding activity was assessed by electrophoretic mobility shift assay.

Results

LAMP increased the level of ROS, phosphorylation of Jak2/Stat3, Stat3–DNA binding activity, and IL-8 expression in A549 cells, which were inhibited by NAC dose-dependently.

Conclusion

LAMP of M. pneumoniae induces the production of ROS, Jak2/Stat3 activation, and IL-8 induction in A549 cells. Antioxidants such as NAC may be beneficial for preventing pulmonary inflammation caused by M. pneumoniae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hammerschlag MR. Mycoplasma pneumoniae infections. Curr Opin Infect Dis. 2001;14:181–6.

    Article  PubMed  CAS  Google Scholar 

  2. Sohn MH, Lee KE, Choi SY, Kwon BC, Chang MW, Kim KE. Effect of Mycoplasma pneumoniae lysate on interleukin-8 gene expression in human respiratory epithelial cells. Chest. 2005;128:322–6.

    Article  PubMed  CAS  Google Scholar 

  3. Hallamaa KM, Tang SL, Ficorilli N, Browning GF. Differential expression of lipoprotein genes in Mycoplasma pneumoniae after contact with human lung epithelial cells, and under oxidative and acidic stress. BMC Microbiol. 2008;8:124.

    Article  PubMed  Google Scholar 

  4. Barreira ER, Souza DC, Goes PF, Bousso A. Septic shock, necrotizing pneumonitis, and meningoencephalitis caused by Mycoplasma pneumoniae in a child: a case report. Clin Pediatr (Phila). 2009;48:320–2.

    Article  Google Scholar 

  5. Waites KB, Talkington DF. Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev. 2004;17:697–728.

    Article  PubMed  CAS  Google Scholar 

  6. Shimizu T, Kida Y, Kuwano K. A dipalmitoylated lipoprotein from Mycoplasma pneumoniae activates NF-kappa B through TLR1, TLR2, and TLR6. J Immunol. 2005;175:4641–6.

    PubMed  CAS  Google Scholar 

  7. Shimizu T, Kida Y, Kuwano K. Triacylated lipoproteins derived from Mycoplasma pneumoniae activate nuclear factor-kappaB through toll-like receptors 1 and 2. Immunology. 2007;121:473–83.

    Article  PubMed  CAS  Google Scholar 

  8. Shimizu T, Kida Y, Kuwano K. Mycoplasma pneumoniae-derived lipopeptides induce acute inflammatory responses in the lungs of mice. Infect Immun. 2008;76:270–7.

    Article  PubMed  CAS  Google Scholar 

  9. Chambaud I, Wroblewski H, Blanchard A. Interactions between mycoplasma lipoproteins and the host immune system. Trends Microbiol. 1999;7:493–9.

    Article  PubMed  CAS  Google Scholar 

  10. Rawadi G, Zugaza JL, Lemercier B, et al. Involvement of small GTPases in Mycoplasma fermentans membrane lipoproteins-mediated activation of macrophages. J Biol Chem. 1999;274:30794–8.

    Article  PubMed  CAS  Google Scholar 

  11. Yang J, Hooper WC, Phillips DJ, Talkington DF. Cytokines in Mycoplasma pneumoniae infections. Cytokine Growth Factor Rev. 2004;15(2–3):157–68.

    Article  PubMed  CAS  Google Scholar 

  12. Yang J, Hooper WC, Phillips DJ, Talkington DF. Regulation of proinflammatory cytokines in human lung epithelial cells infected with Mycoplasma pneumoniae. Infect Immun. 2002;70:3649–55.

    Article  PubMed  CAS  Google Scholar 

  13. Lieberman D, Livnat S, Schlaeffer F, Porath A, Horowitz S, Levy R. IL-1beta and IL-6 in community-acquired pneumonia: bacteremic pneumococcal pneumonia versus Mycoplasma pneumoniae. Infection. 1997;25:90–4.

    Article  PubMed  CAS  Google Scholar 

  14. Hsieh CC, Tang RB, Tsai CH, Chen W. Serum interleukin-6 and tumor necrosis factor-alpha concentrations in children with Mycoplasma pneumoniae. Microbiol Immunol Infect. 2001;34:109–12.

    CAS  Google Scholar 

  15. Narita M, Tanaka H, Yamada S, Abe S, Ariga T, Sakiyama Y. Significant role of interleukin-8 in pathogenesis of pulmonary disease due to Mycoplasma pneumoniae infection. Clin Diagn Lab Immunol. 2001;8:1028–30.

    PubMed  CAS  Google Scholar 

  16. Kim Y, Seo JH, Kim H. β-Carotene and lutein inhibit hydrogen peroxide-induced activation of NF-κB and IL-8 expression in gastric epithelial AGS cells. J Nutr Sci Vitaminol (Tokyo). 2011;57(3):216–23.

    Article  CAS  Google Scholar 

  17. Rahman I. Oxidative stress, transcription factors and chromatin remodelling in lung inflammation. Biochem Pharmacol. 2002;64:935–42.

    Article  PubMed  CAS  Google Scholar 

  18. Mukaida N, Mahe Y, Matsushima K. Cooperative interaction of nuclear factor-kappa B- and cis-regulatory enhancer binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. J Biol Chem. 1990;265:21128–33.

    PubMed  CAS  Google Scholar 

  19. Mukaida N, Okamoto S, Ishikawa Y, Matsushima K. Molecular mechanism of interleukin-8 gene expression. J Leukoc Biol. 1994;56:554–8.

    PubMed  CAS  Google Scholar 

  20. Tsai YT, Chen YH, Chang DM, Chen PC, Lai JH. Janus kinase/signal transducer and activator of transcription 3 signaling pathway is crucial in chemokine production from hepatocytes infected by dengue virus. Exp Biol Med (Maywood). 2011;236:1156–65.

    Article  CAS  Google Scholar 

  21. Hu X, Chen J, Wang L, Ivashkiv LB. Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. J Leukoc Biol. 2007;82:237–43.

    Article  PubMed  CAS  Google Scholar 

  22. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9:798–809.

    Article  PubMed  CAS  Google Scholar 

  23. Yu JH, Kim KH, Kim H. Suppression of IL-1beta expression by the Jak 2 inhibitor AG490 in cerulein-stimulated pancreatic acinar cells. Biochem Pharmacol. 2006;72:1555–62.

    Article  PubMed  CAS  Google Scholar 

  24. Waris G, Turkson J, Hassanein T, Siddiqui A. Hepatitis C virus (HCV) constitutively activates STAT-3 via oxidative stress: role of STAT-3 in HCV replication. J Virol. 2005;79:1569–80.

    Article  PubMed  CAS  Google Scholar 

  25. Dikdan GS, Saba SC, Dela Torre AN, Roth J, Wang S, Koneru B. Role of oxidative stress in the increased activation of signal transducers and activators of transcription-3 in the fatty livers of obese Zucker rats. Surgery. 2004;136:677–85.

    Article  PubMed  Google Scholar 

  26. Mazière C, Conte MA, Mazière JC. Activation of JAK2 by the oxidative stress generated with oxidized low-density lipoprotein. Free Radic Biol Med. 2001;31:1334–40.

    Article  PubMed  Google Scholar 

  27. Schieffer B, Luchtefeld M, Braun S, Hilfiker A, Hilfiker-Kleiner D, Drexler H. Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction. Circ Res. 2000;87:1195–201.

    PubMed  CAS  Google Scholar 

  28. Chen B, Wei J, Wang W, et al. Identification of signaling pathways involved in aberrant production of adipokines in adipocytes undergoing oxidative stress. Arch Med Res. 2009;40:241–8.

    Article  PubMed  CAS  Google Scholar 

  29. Kariya C, Chu HW, Huang J, Leitner H, Martin RJ, Day BJ. Mycoplasma pneumoniae infection and environmental tobacco smoke inhibit lung glutathione adaptive responses and increase oxidative stress. Infect Immun. 2008;76:4455–62.

    Article  PubMed  CAS  Google Scholar 

  30. Sun G, Xu X, Wang Y, Shen X, Chen Z, Yang J. Mycoplasma pneumoniae infection induces reactive oxygen species and DNA damage in A549 human lung carcinoma cells. Infect Immun. 2008;76:4405–13.

    Article  PubMed  CAS  Google Scholar 

  31. Shimizu T, Kida Y, Kuwano K. Mycoplasma pneumoniae-derived lipopeptides induce acute inflammatory responses in the lungs of mice. Infect Immun. 2008;76(1):270–7.

    Article  PubMed  CAS  Google Scholar 

  32. Yu JH, Kim KH, Kim DG, Kim H. Diphenyleneiodonium suppresses apoptosis in cerulein-stimulated pancreatic acinar cells. Int J Biochem Cell Biol. 2007;39:2063–75.

    Article  PubMed  CAS  Google Scholar 

  33. Ju KD, Lim JW, Kim KH, Kim H. Potential role of NADPH oxidase-mediated activation of NADPH oxidase-mediated activation of Jak2/Stat3 and mitogen-activated protein kinases and expression of TGF-β1 in the pathophysiology of acute pancreatitis. Inflamm Res. 2011;60:791–800.

    Article  PubMed  CAS  Google Scholar 

  34. Kim YH, Seo JH, Kim H. Beta-carotene and lutein inhibit hydrogen peroxide-induced activation of NF-κB and IL-8 expression in gastric epithelial AGS cells. J Nutr Sci Vitaminol. 2011;57:216–23.

    Article  PubMed  CAS  Google Scholar 

  35. Yu JH, Kim KH, Kim H. SOCS3 and PPAR-gamma ligands inhibit the expression of IL-6 and TGF-beta 1 by regulating JAK1/STAT3 signaling in pancreas. Int J Biochem Cell Biol. 2008;40:677–88.

    Article  PubMed  CAS  Google Scholar 

  36. Razin S. Adherence of pathogenic mycoplasmas to host cells. Biosci Rep. 1999;19:367–72.

    Article  PubMed  CAS  Google Scholar 

  37. Chmura K, Lutz RD, Chiba H, et al. Mycoplasma pneumoniae antigens stimulate interleukin-8. Chest. 2003;123:425S.

    Article  PubMed  Google Scholar 

  38. Trevino JG, Gray MJ, Nawrocki ST, et al. Src activation of Stat3 is an independent requirement from NF-kappaB activation for constitutive IL-8 expression in human pancreatic adenocarcinoma cells. Angiogenesis. 2006;9:101–10.

    Article  PubMed  CAS  Google Scholar 

  39. Vij N, Sharma A, Thakkar M, Sinha S, Mohan RR. PDGF-driven proliferation, migration, and IL-8 chemokine secretion in human corneal fibroblasts involve JAK2-STAT3 signaling pathway. Mol Vis. 2008;14:1020–7.

    PubMed  CAS  Google Scholar 

  40. Gharavi NM, Alva JA, Mouillesseaux KP, et al. Role of the Jak/Stat pathway in the regulation of interleukin-8 transcription by oxidized phospholipids in vitro and in atherosclerosis in vivo. J Biol Chem. 2007;282:31460–8.

    Article  PubMed  CAS  Google Scholar 

  41. Almagor M, Kahane I, Yatziv S. Role of superoxide anion in host cell injury induced by Mycoplasma pneumoniae infection. A study in normal and trisomy 21 cells. J Clin Invest. 1984;73:842–7.

    Article  PubMed  CAS  Google Scholar 

  42. Almagor M, Kahane I, Gilon C, Yatziv S. Protective effects of the glutathione redox cycle and vitamin E on cultured fibroblasts infected by Mycoplasma pneumoniae. Infect Immun. 1986;52:240–4.

    PubMed  CAS  Google Scholar 

  43. Strassheim D, Riddle SR, Burke DL, Geraci MW, Stenmark KR. Prostacyclin inhibits IFN-gamma-stimulated cytokine expression by reduced recruitment of CBP/p300 to STAT1 in a SOCS-1-independent manner. J Immunol. 2009;183(11):6981–8.

    Article  PubMed  CAS  Google Scholar 

  44. Wertheimer AM, Polyak SJ, Leistikow R, Rosen HR. Engulfment of apoptotic cells expressing HCV proteins leads to differential chemokine expression and STAT signaling in human dendritic cells. Hepatology. 2007;45(6):1422–32.

    Article  PubMed  CAS  Google Scholar 

  45. West AP, Brodsky IE, Rahner C, et al. TLR signaling augments macrophage bactericidal activity through mitochondrial ROS. Nature. 2011;472:476–80.

    Article  PubMed  CAS  Google Scholar 

  46. Scharf S, Hippenstiel S, Flieger A, Suttorp N, N’Guessan PD. Induction of human β-defensin-2 in pulmonary epithelial cells by Legionella pneumophila: involvement of TLR2 and TLR5, p38 MAPK, JNK, NF-κB, and AP-1. Am J Physiol Lung Cell Mol Physiol. 2010;298(5):L687–95.

    Article  PubMed  CAS  Google Scholar 

  47. Wu TT, Chen TL, Loon WS, Tai YT, Cherng YG, Chen RM. Lipopolysaccharide stimulates syntheses of toll-like receptor 2 and surfactant protein-A in human alveolar epithelial A549 cells through upregulating phosphorylation of MEK1 and ERK1/2 and sequential activation of NF-κB. Cytokine. 2011;55(1):40–7.

    Article  PubMed  CAS  Google Scholar 

  48. Ivanov VN, Ghandhi SA, Zhou H, et al. Radiation response and regulation of apoptosis induced by a combination of TRAIL and CHX in cells lacking mitochondrial DNA: a role for NF-κB–STAT3-directed gene expression. Exp Cell Res. 2011;317(11):1548–66.

    Article  PubMed  CAS  Google Scholar 

  49. Funakoshi-Tago M, Tago K, Sato Y, Tominaga S, Kasahara T. JAK2 is an important signal transducer in IL-33-induced NF-κB activation. Cell Signal. 2011;23(2):363–70.

    Article  PubMed  CAS  Google Scholar 

  50. Li X, Kim KW, Cho ML, et al. IL-23 induces receptor activator of NF-kappaB ligand expression in fibroblast-like synoviocytes via STAT3 and NF-kappaB signal pathways. Immunol Lett. 2010;127(2):100–7.

    Article  PubMed  CAS  Google Scholar 

  51. Helin E, Vainionpää R, Hyypiä T, Julkunen I, Matikainen S. Measles virus activates NF-kappa B and STAT transcription factors and production of IFN-alpha/beta and IL-6 in the human lung epithelial cell line A549. Virology. 2001;290(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  52. Morris PE, Bernard GR. Significance of glutathione in lung diseases and implications for therapy. Am J Med Sci. 1994;307:119–27.

    Article  PubMed  CAS  Google Scholar 

  53. Gressier B, Cabanis A, Lebegue S. Decrease of hypochlorous acid and hydroxyl radical generated by stimulated human neutrophils: comparison in vitro of some thiol-containing drugs. Methods Find Exp Clin Pharmacol. 1994;16:9–13.

    PubMed  CAS  Google Scholar 

  54. Quan Y, Jiang CT, Xue B, Zhu SG, Wang X. High glucose stimulates TNFα and MCP-1 expression in rat microglia via ROS and NF-κB pathways. Acta Pharmacol Sin. 2011;32(2):188–93.

    Article  PubMed  CAS  Google Scholar 

  55. Mata M, Morcillo E, Gimeno C, Cortijo J. N-acetyl-l-cysteine (NAC) inhibit mucin synthesis and pro-inflammatory mediators in alveolar type II epithelial cells infected with influenza virus A and B and with respiratory syncytial virus (RSV). Biochem Pharmacol. 2011;82(5):548–55.

    Article  PubMed  CAS  Google Scholar 

  56. Petrescu BC, Gurzu B, Iancu RI, et al. Apelin effects on lipopolysaccharide-increased pulmonary permeability in rats. Rev Med Chir Soc Med Nat Iasi. 2010;114(1):163–9.

    PubMed  CAS  Google Scholar 

  57. Chu SH, Kim H, Seo JY, Lim JW, Mukaida N, Kim KH. Role of NF-kB and AP-1 on Helicobacter pylori-induced IL-8 expression in AGS cells. Dig Dis Sci. 2003;48(2):257–65.

    Article  PubMed  Google Scholar 

  58. Roebuck KA. Oxidant stress regulation of IL-8 and ICAM-1 gene expression: different activation and binding of the transcription factors AP-1 and NF-κB. Int J Mol Med. 1999;4:223–30.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Foundation of Korea (NRF) funded by Ministry of Education, Science and Technology (2012-0000811). H. Kim is grateful to the Brain Korea 21 Project, College of Human Ecology, Yonsei University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeyoung Kim.

Additional information

Responsible Editor: Liwu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, S.Y., Lim, J.W., Shimizu, T. et al. Reactive oxygen species mediate Jak2/Stat3 activation and IL-8 expression in pulmonary epithelial cells stimulated with lipid-associated membrane proteins from Mycoplasma pneumoniae . Inflamm. Res. 61, 493–501 (2012). https://doi.org/10.1007/s00011-012-0437-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0437-7

Keywords

Navigation