1 Introduction

In [2, section 1] the author mentions that the original result by Hyers in [5] holds true for commutative semigroups in general. Thus we have the following result.

Theorem 1

(Forti and Hyers) Let S be a commutative semigroup and X be a Banach spaces and let \(f:S\rightarrow X\) be a function such that for some \(\varepsilon > 0\)

$$\begin{aligned} \left\| f(x + y)-f(x)- f(y)\right\| \le \varepsilon \text { for all } x, y \in S. \end{aligned}$$
(1)

Then for every \(x\in S\) the limit \(\alpha (x) = \lim _{n\rightarrow \infty } \frac{f(2^nx)}{2^n}\) exists, the function \(\alpha \) is additive and

$$\begin{aligned} \left\| f(x)-\alpha (x)\right\| \le \varepsilon \quad \text { for all }\; x\in S. \end{aligned}$$
(2)

Moreover \(\alpha \) is the unique additive function satisfying the last inequality.

In the proof it is shown that the sequence \((\frac{f(2^nx)}{2^n})_{n\in \mathbb {N}_0}\) is a Cauchy sequence, and thus convergent, since X is assumed to be a Banach space. But one might ask whether this assumption is necessary to find some additive \(\alpha \) such that (2) holds.

It was shown in [3] that the completeness of X is in some sense necessary.

Theorem 2

(Forti and Schwaiger) Let G be an abelian group with an element of infinite order and X a normed space. Assume that for all \(f:G\rightarrow X\) and all \(\varepsilon >0\) Eq. (1) implies the existence of an additive function \(\alpha :G\rightarrow X\) such that

$$\begin{aligned} \left\| f(x)-\alpha (x)\right\| \le \delta \text { for all }x\in G, \end{aligned}$$
(2')

for some \(\delta >0\). Then X is a Banach space.

For \(G=\mathbb {Z}\) this has been proved earlier in [6] and for G as in the above theorem by a different method in [7, Theorem 12.7].

Condition (1) has been weakened by replacing \(\varepsilon \) by suitable functions \(\varphi \) depending on x and y with the result that the bound in (2) also depends on xy and \(\varphi \). Many of these results (see [2, pp. 9–11]) are special cases of a very general result (see [1]) for equations of the form \(g[F(x, y)] = H[g(x), g(y)]\) with the bounding function \(\varphi \ge 0\) such that \(\sum _{i=1}^{\infty }2^{-i}\varphi (2^{i-1}x,2^{i-1}x)<\infty \) for all x and \(\lim _{i\rightarrow \infty }2^{-i}\varphi (2^{i-1}x,2^{i-1}x)=0\) for all xy.

Recently Ludwig Reich posed the question whether a result similar to Theorem 2 would hold true in this more general situation. In what follows this will be answered in the affirmative.

2 A stability result

The conditions from [1] are in the special case of the Cauchy equation contained in the conditions below when \(p=2\).

Theorem 3

Let X be a Banach space and S an Abelian semigroup. Assume that \(\varphi :S\times S\rightarrow [0,\infty )\) and \(f:S\rightarrow X\) satisfy

$$\begin{aligned} \left\| f(x+y)-f(x)-f(y)\right\| \le \varphi (x,y),\quad x,y\in S. \end{aligned}$$
(3)

Let moreover \(p\in \mathbb {N}\) be greater than 1, put

$$\begin{aligned} \varphi _p(x):=\sum _{j=1}^{p-1} \varphi (jx,x),\quad x\in S, \end{aligned}$$
(4)

and assume

  1. (i)

    \(\Phi _p(x):=\sum _{j=1}^\infty \frac{\varphi _p(p^{j-1} x)}{p^j} <\infty \) for all \(x\in S\) and

  2. (ii)

    \(\lim _{n\rightarrow \infty }\frac{\varphi (p^n x,p^n y)}{p^{n}}=0\) for all \(x,y\in S\).

Then there is an additive function \(a:S\rightarrow X\) such that

$$\begin{aligned} \left\Vert f(x)-a(x)\right\Vert \le \Phi _p(x) \text { for all } x\in S. \end{aligned}$$
(5)

This a is unique among all additive functions b satisfying \(\left\| f(x)-b(x)\right\| \le c \Phi _p(x)\) for all \(x\in S\) (and some \(c\ge 0\) depending possibly on b) and may be defined by \(a(x)=\lim _{n\rightarrow \infty }\frac{f(p^n x)}{p^n}\).

Proof

(3) for \(y=x\) implies \(\left\| f(2x)-2f(x)\right\| \le \varphi (x,x)\). Using induction on q we get

$$\begin{aligned} \left\| f(qx)-qf(x)\right\| \le \varphi _q(x),\quad q\in \mathbb {N},\, q>1,\, x\in S. \end{aligned}$$
(6)

In particular this holds true for \(q=p\). Applying (6) to \(p^{j-1} x\), \(j\ge 1\), instead of x yields

$$\begin{aligned} \left\| f(p^j x)-p f(p^{j-1}x)\right\| \le \varphi _p(p^{j-1}x) \end{aligned}$$
(7)

and

$$\begin{aligned} \left\| f(p^j x)/p^j- f(p^{j-1}x)/p^{j-1}\right\| \le \frac{\varphi _p(p^{j-1}x)}{p^j}. \end{aligned}$$
(8)

Writing \(f_j(x):=f(p^jx)/p^j\), \(x\in S\), \(j\in \mathbb {N}_0\), the above equation reads as

$$\begin{aligned} \left\| f_j(x)-f_{j-1}(x)\right\| \le \frac{\varphi _p(p^{j-1}x)}{p^j},\quad j\in \mathbb {N},\, x\in S. \end{aligned}$$
(9)

This may be used to show that the sequence \((f_j(x))_{j\in \mathbb {N}_0}\) is a Cauchy sequence since

$$\begin{aligned} \begin{aligned} \left\| f_{j+l}(x)-f_j(x)\right\|&\le \sum _{k=1}^{l}\left\| f_{j+k}(x)-f_{j+k-1}(x)\right\| \\&\le \sum _{k=1}^{l}\frac{\varphi _p(p^{j+k-1}x)}{p^{j+k}}\le \sum _{k=1}^{\infty }\frac{\varphi _p(p^{j+k-1}x)}{p^{j+k}}\\&=\sum _{k=j+1}^{\infty }\frac{\varphi _p(p^{k-1}x)}{p^{k}},\quad x\in S, \end{aligned} \end{aligned}$$
(10)

and since the latter series is a tail of the series \(\Phi _p(x)\):

$$\begin{aligned} \sum _{k=j+1}^{\infty }\frac{\varphi _p(p^{k-1}x)}{p^{k}}= \Phi _p(x)-\sum _{k=1}^{j}\frac{\varphi _p(p^{k-1}x)}{p^{k}}\rightarrow 0\text { for } j\rightarrow \infty . \end{aligned}$$
(11)

Since X is complete the function \(a:S\rightarrow X\), \(a(x):=\lim _{j\rightarrow \infty }f_j(x)\) is well defined. Moreover (10) for \(j=0\) with \(l\rightarrow \infty \) gives

$$\begin{aligned} \left\| a(x)-f(x)\right\| \le \sum _{k=1}^{\infty }\frac{\varphi _p(p^{k-1}x)}{p^{k}}=\Phi _p(x). \end{aligned}$$
(12)

Moreover a is additive: Since S is Abelian we may estimate

$$\begin{aligned} \left\| f_j(x+y)-f_j(x)-f_j(y)\right\|&= \frac{1}{p^j}\left\| f(p^jx+p^j y)-f(p^j x)-f(p^j y)\right\| \\ \le \frac{\varphi (p^jx,p^jy)}{p^j}. \end{aligned}$$

For \(j\rightarrow \infty \) we get by (ii) that \(\left\| a(x+y)-a(x)-a(y)\right\| =0\) as desired.

Now let \(b:S\rightarrow X\) be another additive function such that for some \(c>0\) we have \(\left\| f(x)-b(x)\right\| \le c\Phi _p(x)\) for all \(x\in S\). Then the additive function \(d:=b-a\) satisfies \(\left\| d(x)\right\| \le (c+1)\Phi _p(x)\) for all x. Because of the additivity of d substituting \(p^n x\) for x results in

$$\begin{aligned} p^n\left\| d(x)\right\|&=\left\| d(p^nx)\right\| \le (c+1)\Phi _p(p^n x)\text { or }\\ \left\| d(x)\right\|&\le (c+1)\frac{\Phi _p(p^n x)}{p^n}=(c+1)\sum _{j=1}^\infty \frac{\varphi _p(p^{n+j-1}x)}{p^{n+j}}\\&=(c+1)\sum _{j=n+1}^\infty \frac{\varphi _p(p^{j-1}x)}{p^{j}}, \end{aligned}$$

which tends to 0 for \(n\rightarrow \infty \) by (11). Thus \(d(x)=0\) for all x, i. e., \(a=b\). \(\square \)

Remark 1

  1. 1.

    As mentioned before the case \(p=2\) results in a well known result (see [1] and additionally the references in [2] and also [4]). For \(p>2\) the result seems to be new in the archimedean case. For stability investigations where the target space of the function involved is a Banach space over the non archimedean valued field \(\mathbb {Q}_p\) some results may be found in [8]. But of course the question arises whether there are functions \(\varphi \) such that \(\varphi _p\) satisfies the conditions of the theorem for some \(p>2\), but \(\varphi _2\) does not. An example of such \(\varphi \) is, for example, the following. Let \(S:=\mathbb {N}\) and define \(\varphi :S\times S\rightarrow [0,\infty )\) by \(\varphi (x,y):=1\) if \(3\mid x\) and \(3\mid y\), \(\varphi (2^n,2^m):=2^{n+m}\) for all \(n,m\in \mathbb {N}\), and let \(\varphi (x,y)\) be arbitrary in all the remaining cases. Then the conditions (i) and (ii) are satisfied for all xy if \(p=3\). But (ii) and thus also (i) is not satisfied for \(p=2\) since \(\varphi _2(2^n\cdot 1,2^n\cdot 1)/2^n=2^n\) for all n.

  2. 2.

    Obviously the Theorem may be applied in the particular case when \(\varphi =\varepsilon >0\) is constant.

3 Some characterizations of completeness by stability, the archimedean case

Consider an integer \(p>1\). Let S be a commutative semigroup and put

$$\begin{aligned} \mathcal {F}:=\mathcal {F}_p:=\{\varphi :S\times S\rightarrow [0,\infty )\mid \varphi \,\, \hbox {satisfies (i) and (ii) of Theorem 3}\}. \end{aligned}$$

For \(\varphi \in \mathcal {F}\) define \(\Phi =\Phi _\varphi :S\rightarrow [0,\infty )\) by

$$\begin{aligned} \Phi (x):=\sum _{n=1}^\infty \frac{\varphi _p(p^{n-1} x)}{p^n} <\infty ,\qquad x\in S, \end{aligned}$$

where \(\varphi _p\) is defined by (4). If for \(m\ge 1\) we denote by \(\Phi _{\varphi ,m}(x)\) the tail

$$\begin{aligned} \Phi _{\varphi ,m}(x):=\sum _{n=m}^\infty \frac{\varphi _p(p^{n-1} x)}{p^n} <\infty , \end{aligned}$$

then, as mentioned in (11), \(\lim _{m\rightarrow \infty }\Phi _{\varphi ,m}(x)=0\).

Let \(\mathcal {K}\subseteq \mathcal {F}\) be a non-empty cone. I.e., \(\mathcal {K}+\mathcal {K}\subseteq \mathcal {K}\), \([0,\infty )\cdot \mathcal {K}\subseteq \mathcal {K}\) (and \(\mathcal {K}\not =\emptyset \)). If X is a normed space over \(\mathbb {Q}\) with completion \(X^c\), then the set

$$\begin{aligned} \mathcal {C}:=\mathcal {C}_{\mathcal {K}}=\{f\in X^S\mid \exists \varphi \in \mathcal {K}:\left\| f(x+y)-f(x)-f(y)\right\| \le \varphi (x,y),~x,y\in S\} \end{aligned}$$

is a subspace of \(X^S\). In the sequel we will indicate the Cauchy difference \(f(x+y)-f(x)-f(y)\) by \(\gamma _f(x,y)\). Motivated by the proof of Theorem 3 and certain results of [7] let

$$\begin{aligned} \alpha :\mathcal {C}\rightarrow {{\,\mathrm{Hom}\,}}(S,X^c),\quad \alpha (f)(x):=\lim _{n\rightarrow \infty }\frac{f(p^nx)}{p^n}. \end{aligned}$$

This mapping is well defined and linear.

Theorem 4

Using the notation from above, \(\ker (\alpha )\) is equal to

$$\begin{aligned} \{f\in X^S\mid \exists \varphi \in \mathcal {K}: \left\| \gamma _f(x,y)\right\| \le \varphi (x,y) \hbox { and } \left\| f(x)\right\| \le \Phi _\varphi (x),~x,y\in S\}. \end{aligned}$$

Proof

If f belongs to the kernel of \(\alpha \), then \(\left\| f(x)\right\| =\left\| f(x)-\alpha (f)(x)\right\| \le \Phi _\varphi (x)\), \(x\in S\), by an application of Theorem 3.

Conversely, if f belongs to \(\mathcal {C}_\mathcal {K}\), then

$$\begin{aligned} \left\| \frac{f(p^nx)}{p^n}\right\| \le \frac{\Phi _\varphi (p^nx)}{p^n} =\sum _{j=1}^\infty \frac{\varphi _p(p^{j-1}p^nx)}{p^jp^n} =\Phi _{\varphi ,n+1}(x)\mathop \rightarrow \limits _{n\rightarrow \infty }0 \text { by (11)}, \end{aligned}$$

thus \(\alpha (f)=0\). \(\square \)

To each \(\varphi \in \mathcal {F}\) we associate some \(\psi =\psi _\varphi :S\times S\rightarrow [0,\infty )\) defined by

$$\begin{aligned} \psi (x,y)=\varphi (x+y,x+y)+\varphi (x,x)+\varphi (y,y). \end{aligned}$$

Theorem 5

If there exists some \(\varphi \in \mathcal {K}\) such that \(\psi =\psi _\varphi \) belongs to \(\mathcal {K}\), and if \(\varphi (x,x)>0\) for all \(x\in S\), then \(\alpha \) is surjective.

Proof

Consider some \(a\in {{\,\mathrm{Hom}\,}}(S,X^c)\) and some \(\varphi \in \mathcal {K}\) such that \(\psi \in \mathcal {K}\) and \(\varphi (x,x)>0\) for all \(x\in S\). Since \({\overline{X}}=X^c\) we may find for each \(x\in S\) some value \(f(x)\in X\) such that \(\left\| f(x)-a(x)\right\| <\varphi (x,x)\). This defines a function \(f:S\rightarrow X\). Then \(\gamma _f(x,y)=(f(x+y,x+y)-a(x+y))-(f(x,x)-a(x))-(f(y,y)-a(y))\) and, therefore, \(\left\| \gamma _f(x,y)\right\| \le \varphi (x+y,x+y)+\varphi (x,x)+\varphi (y,y)=\psi (x,y)\). From \(\psi \in \mathcal {K}\) we derive that \(f\in \mathcal {C}\). By Theorem 3 there exists a unique \(b\in {{\,\mathrm{Hom}\,}}(S,X^c)\) such that \(\left\| f-b\right\| \le \Phi _\psi \). It is given by \(b(x)=\lim _{n\rightarrow \infty }f(p^nx)/p^n=\alpha (f)(x)\), \(x\in S\).

Moreover \(\left\| f(p^nx)-p^na(x)\right\| =\left\| f(p^nx)-a(p^nx)\right\| \le \varphi (p^nx,p^nx)\), \(x\in S\), thus

$$\begin{aligned} \left\| \frac{f(p^nx)}{p^n}-a(x)\right\| \le \frac{\varphi (p^nx,p^nx)}{p^n}\mathop \rightarrow \limits _{n\rightarrow \infty } 0,\qquad x\in S, \end{aligned}$$

by (ii) of Theorem 3. Consequently \(\left\| b(x)-a(x)\right\| =0\), thus \(a=b=\alpha (f)\), and a belongs to the image of \(\alpha \). \(\square \)

Remark 2

Using the notation from above we have

$$\begin{aligned} \mathcal {C}/{{\,\mathrm{Ker}\,}}(\alpha )\cong {{\,\mathrm{Hom}\,}}(S,X^c) \end{aligned}$$

provided that there exists some \(\varphi \in \mathcal {K}\) such that \(\psi =\psi _\varphi \) belongs to \(\mathcal {K}\) and that \(\varphi (x,x)>0\) for all \(x\in S\).

Theorem 6

For each \(\varphi \in \mathcal {F}\) the function \(\psi =\psi _\varphi \) belongs to \(\mathcal {F}\).

Proof

Let \(\varphi \in \mathcal {F}\) and \(N\in \mathbb {N}\). Then \(\psi \) satisfies (i) since

$$\begin{aligned} \begin{aligned}&\sum _{n=1}^N\frac{\psi _p(p^{n-1}x)}{p^n}=\sum _{n=1}^N\frac{1}{p^n} \sum _{j=1}^{p-1}\psi (jp^{n-1}x,p^{n-1}x)\\&=\sum _{n=1}^N\frac{1}{p^n}\sum _{j=1}^{p-1}\Bigl ( \varphi ((j+1)p^{n-1}x,(j+1)p^{n-1}x)+ \varphi (jp^{n-1}x,jp^{n-1}x) + \varphi (p^{n-1}x,p^{n-1}x)\Bigr )\\&\le \sum _{n=1}^N\frac{1}{p^n}\sum _{j=1}^{p-1}\sum _{k=1}^{p-1}\Bigl ( \varphi (k(j+1)p^{n-1}x,(j+1)p^{n-1}x)+ \varphi (kjp^{n-1}x,jp^{n-1}x)\\&\qquad \qquad {}+ \varphi (kp^{n-1}x,p^{n-1}x)\Bigr )\\&=\sum _{j=1}^{p-1}\sum _{n=1}^N\frac{1}{p^n}\Bigl ( \varphi _p((j+1)p^{n-1}x)+ \varphi _p(jp^{n-1}x)+ \varphi _p(p^{n-1}x)\Bigr )\\&\le \sum _{j=1}^{p-1}\Bigl ( \Phi ((j+1)p^{n-1}x)+ \Phi (jp^{n-1}x)+ \Phi (p^{n-1}x)\Bigr )<\infty , \end{aligned} \end{aligned}$$

and (ii) since

$$\begin{aligned} \frac{\psi (p^nx,p^ny)}{p^n}=\frac{\varphi (p^n(x+y),p^n(x+y))+\varphi (p^nx,p^nx)+\varphi (p^ny,p^ny)}{p^n}\mathop \rightarrow \limits _{n\rightarrow \infty }0 \end{aligned}$$

which finishes the proof. \(\square \)

Now we can characterize completeness of X in the following way:

Theorem 7

Consider \(S=\mathbb {N}_0\), an integer \(p>1\), X a normed space over \(\mathbb {Q}\), and \(\varphi \in \mathcal {F}=\mathcal {F}_p\) satisfying \(\varphi (n,n)>0\) for all \(n\in \mathbb {N}_0\).

If for each function \(f:\mathbb {N}_0\rightarrow X\) satisfying

$$\begin{aligned} \left\| \gamma _f(n,m)\right\| \le \psi _\varphi (n,m),\quad n,m\in \mathbb {N}_0, \end{aligned}$$

there exists some \(b\in {{\,\mathrm{Hom}\,}}(\mathbb {N}_0,X)\) such that \(\left\| f-b\right\| \le \Phi _\psi \), \(\psi =\psi _\varphi \), then \(X=X^c\), thus X is complete.

Proof

Consider some \(x_0\in X^c\), an element of the closure of X, \(\varphi \in \mathcal {F}\) satisfying \(\varphi (n,n)>0\) for all \(n\in \mathbb {N}_0\), and \(a\in {{\,\mathrm{Hom}\,}}(\mathbb {N}_0,X^c)\) given by \(a(n)=nx_0\). For each \(n\in \mathbb {N}_0\) there exists a value \(f(n)\in X\) such that \(\left\| f(n)-a(n)\right\| <\varphi (n,n)\). This defines a function \(f\in X^{\mathbb {N}_0}\). Then \(\left\| \gamma _f(n,m)\right\| \le \left\| f(n+m)-a(n+m)\right\| +\left\| f(n)-a(n)\right\| +\left\| f(m)-a(m)\right\| \le \varphi (n+m,n+m)+\varphi (n,n)+\varphi (m,m)=\psi _\varphi (n,m)\), \(n,m\in \mathbb {N}_0\). Theorem 6 implies \(\psi _\varphi \in \mathcal {F}\), therefore \(\alpha : \mathcal {C}_\mathcal {F}\rightarrow {{\,\mathrm{Hom}\,}}(\mathbb {N}_0,X^c)\) is surjective. By assumption, there exists some \(b\in {{\,\mathrm{Hom}\,}}(\mathbb {N}_0,X)\) such that \(\left\| f(n)-b(n)\right\| \le \Phi _\psi (n)\), \(n\in \mathbb {N}_0\). Let \(\xi =b(1)\), then \(b(n)=n\cdot b(1)=n\xi \), whence,

$$\begin{aligned} n\left\| \xi -x_0\right\| =\left\| n\xi -nx_0\right\| \le \left\| n\xi -f(n)\right\| +\left\| f(n)-nx_0\right\| \le \Phi _\psi (n)+\varphi (n,n),\quad n\in \mathbb {N}_0. \end{aligned}$$

For \(n=p^m\), \(m\in \mathbb {N}_0\), we obtain

$$\begin{aligned} \left\| \xi -x_0\right\| \le \frac{1}{p^m}\Bigl (\Phi _\psi (p^m)+\varphi (p^m,p^m)\Bigr ) \end{aligned}$$

which by Theorem 5 and (ii) from Theorem 3 tends to 0 for \(m\rightarrow \infty \). Hence, \(\left\| \xi -x_0\right\| =0\) which means \(x_0=\xi =b(1)\in X\), whence \(X^c\subseteq X\) and \(X=X^c\). \(\square \)

Corollary 1

Consider \(S=\mathbb {N}_0\), an integer \(p>1\), X a normed space over \(\mathbb {Q}\), and \(\varepsilon >0\). If for each function \(f:\mathbb {N}_0\rightarrow X\) satisfying

$$\begin{aligned} \left\| \gamma _f(n,m)\right\| \le \varepsilon ,\quad n,m\in \mathbb {N}_0, \end{aligned}$$

there exists some \(b\in {{\,\mathrm{Hom}\,}}(\mathbb {N}_0,X)\) such that \(\left\| f-b\right\| \le \varepsilon \), then \(X=X^c\), thus X is complete.

Proof

This is the special case of Theorem 7 for \(\varphi =\varepsilon /3\) since then \(\psi =\psi _\varphi =\varepsilon \), \(\psi _p=(p-1)\varepsilon \), and \(\Phi _\psi =(p-1)\varepsilon \sum _{n=1}^\infty p^{-n}=\varepsilon \). \(\square \)

4 Some characterizations of completeness by stability, the non-archimedean case

In a similar way the situation of non-archimedean normed spaces can be studied.

In [8] the following theorem can be found. It is a reformulation of Theorem 3.

Theorem 8

Let X be a Banach space over \((\mathbb {Q},\vert ~\vert _p)\), p a prime, and S an Abelian semigroup which is uniquely divisible by p, i.e., the mapping \(S\ni x\mapsto px=:\pi (x)\in S\) is bijective. Assume that \(\varphi :S\times S\rightarrow [0,\infty )\) and \(f:S\rightarrow X\) satisfy

$$\begin{aligned} \left\| f(x+y)-f(x)-f(y)\right\| \le \varphi (x,y),\quad x,y\in S, \end{aligned}$$
(13)

together with

  1. (i)

    \(\Phi _p(x):=\sum _{n=1}^\infty \frac{1}{p^{n-1}}\varphi _p(\frac{x}{p^n})<\infty \) for all \(x\in S\) and

  2. (ii)

    \(\lim _{n\rightarrow \infty }\frac{\varphi (\frac{x}{p^n},\frac{y}{p^n})}{p^{n}}=0\) for all \(x,y\in S\), where

$$\begin{aligned} \varphi _p(x):=\sum _{j=1}^{p-1} \varphi (jx,x) \end{aligned}$$
(14)

and \(x/p^n=\pi ^{-n}(x)\).

Then there is an additive function \(a:S\rightarrow X\) such that

$$\begin{aligned} \left\| f(x)-a(x)\right\| \le \Phi _p(x) \text { for all } x\in S. \end{aligned}$$
(15)

This a is unique among all additive functions b satisfying \(\left\| f(x)-b(x)\right\| \le c \Phi _p(x)\) for all \(x\in S\) (and some \(c\ge 0\) depending possibly on b) and may be defined by \(a(x)=\lim _{n\rightarrow \infty }p^n f(\frac{x}{p^n})\).

Now let

$$\begin{aligned} \mathcal {F}:=\mathcal {F}_p:=\{\varphi :S\times S\rightarrow [0,\infty )\mid \varphi \,\, \hbox {satisfies (i) and (ii) of }Theorem 8\}. \end{aligned}$$

For \(\varphi \in \mathcal {F}\) define \(\Phi =\Phi _\varphi :S\rightarrow [0,\infty )\) by

$$\begin{aligned} \Phi (x):=\sum _{n=1}^\infty \frac{1}{p^{n-1}}\varphi _p(\frac{x}{p^n}) <\infty ,\qquad x\in S, \end{aligned}$$

where \(\varphi _p\) is given by (14). If for \(m\ge 1\) we denote by \(\Phi _{\varphi ,m}(x)\) the tail

$$\begin{aligned} \Phi _{\varphi ,m}(x):=\sum _{n=m}^\infty \frac{1}{p^{n-1}}\varphi _p(\frac{x}{p^n}) <\infty , \end{aligned}$$

and again \(\lim _{m\rightarrow \infty }\Phi _{\varphi ,m}(x)=0\).

Let \(\mathcal {K}\subseteq \mathcal {F}\) be a non-empty cone. If X is a normed space over \((\mathbb {Q},\vert ~\vert _p)\), p a prime, with completion \(X^c\), and S is an Abelian semigroup which is uniquely divisible by p, then the set

$$\begin{aligned} \mathcal {C}:=\mathcal {C}_{\mathcal {K}}=\{f\in X^S\mid \exists \varphi \in \mathcal {K}:\left\| f(x+y)-f(x)-f(y)\right\| \le \varphi (x,y),~x,y\in S\} \end{aligned}$$

is a subspace of \(X^S\). Motivated by the proof of Theorem 8 let

$$\begin{aligned} \alpha :\mathcal {C}\rightarrow {{\,\mathrm{Hom}\,}}(S,X^c),\quad \alpha (f)(x):=\lim _{n\rightarrow \infty }p^n f(\frac{x}{p^n}). \end{aligned}$$

This mapping is well defined and linear.

Theorem 9

Using the notation from above

$$\begin{aligned} {{\,\mathrm{Ker}\,}}(\alpha )=\{f\in X^S\mid \exists \varphi \in \mathcal {K}: \left\| \gamma _f(x,y)\right\| \le \varphi (x,y) \hbox { and } \left\| f(x)\right\| \le \Phi _\varphi (x),~x,y\in S\}. \end{aligned}$$

Proof

If f belongs to the kernel of \(\alpha \), then \(\left\| f(x)\right\| =\left\| f(x)-\alpha (f)(x)\right\| \le \Phi _\varphi (x)\), \(x\in S\), by an application of Theorem 8.

Conversely, if f belongs to \(\mathcal {C}_\mathcal {K}\), then

$$\begin{aligned} \left\| p^nf(\frac{x}{p^n})\right\| =\vert p^n\vert _p\left\| f(\frac{x}{p^n})\right\| \le p^{-n}\Phi _\varphi (\frac{x}{p^n})= \Phi _{\varphi ,n+m}(x)\mathop \rightarrow \limits _{n\rightarrow \infty }0, \end{aligned}$$

thus \(\alpha (f)=0\). \(\square \)

Theorem 10

If there exists some \(\varphi \in \mathcal {K}\) such that \(\psi =\psi _\varphi \) belongs to \(\mathcal {K}\), and if \(\varphi (x,x)>0\) for all \(x\in S\), then \(\alpha \) is surjective.

Proof

Consider some \(a\in {{\,\mathrm{Hom}\,}}(S,X^c)\) and some \(\varphi \in \mathcal {K}\) such that \(\psi \in \mathcal {K}\) and \(\varphi (x,x)>0\) for all \(x\in S\). Since \({\overline{X}}=X^c\) for each \(x\in S\) we may find a value \(f(x)\in X\) such that \(\left\| f(x)-a(x)\right\| <\varphi (x,x)\). This defines a function \(f:S\rightarrow X\). Then \(\gamma _f(x,y)=(f(x+y,x+y)-a(x+y))-(f(x,x)-a(x))-(f(y,y)-a(y))\) and therefore \(\left\| \gamma _f(x,y)\right\| \le \varphi (x+y,x+y)+\varphi (x,x)+\varphi (y,y)=\psi (x,y)\). From \(\psi \in \mathcal {K}\) we derive that \(f\in \mathcal {C}\). By Theorem 8 there exists a unique \(b\in {{\,\mathrm{Hom}\,}}(S,X^c)\) such that \(\left\| f-b\right\| \le \Phi _\psi \). It is given by \(b(x)=\lim _{n\rightarrow \infty }p^nf(x/p^n)=\alpha (f)(x)\), \(x\in S\).

Moreover, since \(p^na(\frac{x}{p^n})=a(x)\), \(x\in S\), we have

$$\begin{aligned} \left\| f(\frac{x}{p^n})-p^{-n}a(x)\right\| =\left\| f(\frac{x}{p^n})-a(\frac{x}{p^n})\right\| \le \varphi (\frac{x}{p^n},\frac{x}{p^n}),\quad x\in S, \end{aligned}$$

thus

$$\begin{aligned}&\left\| p^nf(\frac{x}{p^n})-a(x)\right\| = \left\| p^n(f(\frac{x}{p^n})-p^{-n}a(x))\right\| = \vert p^n\vert _p \left\| f(\frac{x}{p^n})-p^{-n}a(x)\right\| =\\ \quad&p^{-n} \left\| f(\frac{x}{p^n})-a(\frac{x}{p^{n}})\right\| \le \varphi (\frac{x}{p^n},\frac{x}{p^n})/p^n \mathop \rightarrow \limits _{n\rightarrow \infty } 0,\quad x\in S, \end{aligned}$$

by (ii) of Theorem 8. Consequently \(\left\| b(x)-a(x)\right\| =0\), thus \(a=b=\alpha (f)\), and a belongs to the image of \(\alpha \). \(\square \)

Remark 3

Using the notation from above we have

$$\begin{aligned} \mathcal {C}/{{\,\mathrm{Ker}\,}}(\alpha )\cong {{\,\mathrm{Hom}\,}}(S,X^c) \end{aligned}$$

provided that there exists some \(\varphi \in \mathcal {K}\) such that \(\psi =\psi _\varphi \) belongs to \(\mathcal {K}\) and that \(\varphi (x,x)>0\) for all \(x\in S\).

Theorem 11

For each \(\varphi \in \mathcal {F}\) the function \(\psi =\psi _\varphi \) belongs to \(\mathcal {F}\).

Proof

We have to prove, that \(\psi \) satisfies both (i) and (ii) from Theorem 8.

Let \(N\in \mathbb {N}\) and \(x\in S\). Then

$$\begin{aligned}&\sum _{n= 1}^N \frac{1}{p^{n-1}} \psi _p(\frac{x}{p^{n}})= \sum _{n= 1}^N \frac{1}{p^{n-1}}\sum _{j=1}^{p-1} \psi (j\frac{x}{p^{n}},\frac{x}{p^{n}})=\\ \quad&\sum _{n= 1}^N \frac{1}{p^{n-1}}\sum _{j=1}^{p-1} \left( \varphi ((j+1)\frac{x}{p^{n}},(j+1)\frac{x}{p^{n}})+ \varphi (j\frac{x}{p^{n}},j\frac{x}{p^{n}})+ \varphi (\frac{x}{p^{n}},\frac{x}{p^{n}}) \right) \le \\ \quad&\sum _{n= 1}^N \frac{1}{p^{n-1}}\sum _{j=1}^{p-1} \sum _{k=1}^{p-1} \left( \varphi (k(j+1)\frac{x}{p^n},(j+1)\frac{x}{p^{n}})+ \varphi (kj\frac{x}{p^n},j\frac{x}{p^{n}})+ \varphi (k\frac{x}{p^n},\frac{x}{p^{n}}) \right) =\\ \quad&\sum _{j=1}^{p-1} \sum _{n= 1}^N \frac{1}{p^{n-1}} \left( \varphi _p((j+1)\frac{x}{p^n})+ \varphi _p(j\frac{x}{p^n})+ \varphi _p(\frac{x}{p^n}) \right) \le \\ \quad&\sum _{j=1}^{p-1} \left( \Phi ((j+1)x)+ \Phi (jx)+ \Phi (x) \right) <\infty . \end{aligned}$$

This holds true for all N, thus (i) is satisfied.

Let \(x,y\in S\), then

$$\begin{aligned} \frac{\psi (\frac{x}{p^n},\frac{y}{p^n})}{p^n} = \frac{\varphi (\frac{x+y}{p^n},\frac{x+y}{p^n})+\varphi (\frac{x}{p^n},\frac{x}{p^n})+\varphi (\frac{y}{p^n},\frac{y}{p^n})}{p^n} \mathop \rightarrow \limits _{n\rightarrow \infty }0 \end{aligned}$$

which proves (ii). \(\square \)

Now we can characterize completeness of X in the following way:

Theorem 12

Let p be a prime. Consider \(S=\{np^z\mid n\in \mathbb {N}_0,~z\in \mathbb {Z}\}\), X a normed space over \((\mathbb {Q},\vert ~\vert _p)\), and \(\varphi \in \mathcal {F}_p\) satisfying \(\varphi (x,x)>0\) for all \(x\in S\). If for each function \(f:S\rightarrow X\) such that

$$\begin{aligned} \left\| \gamma _f(s,t)\right\| \le \psi _\varphi (s,t),\quad s,t\in S, \end{aligned}$$

there exists some \(b\in {{\,\mathrm{Hom}\,}}(S,X)\) such that \(\left\| f-b\right\| \le \Phi _\psi \), \(\psi =\psi _\varphi \), then \(X=X^c\), thus X is complete.

Proof

Consider some \(x_0\in X^c\), an element of the closure of X, \(\varphi \in \mathcal {F}\) satisfying \(\varphi (s,s)>0\) for all \(s\in S\), and \(a\in {{\,\mathrm{Hom}\,}}(S,X^c)\) given by \(a(s)=sx_0\). For each \(s\in S\) there exists a value \(f(s)\in X\) such that \(\left\| f(s)-a(s)\right\| <\varphi (s,s)\). This defines a function \(f\in X^{S}\). Then \(\left\| \gamma _f(s,t)\right\| \le \left\| f(s+t)-a(s+t)\right\| +\left\| f(s)-a(s)\right\| +\left\| f(t)-a(t)\right\| \le \varphi (s+t,s+t)+\varphi (s,s)+\varphi (t,t)=\psi _\varphi (s,t)\), \(s,t\in S\). Theorem 11 implies \(\psi _\varphi \in \mathcal {F}\), therefore \(\alpha :\mathcal {C}_\mathcal {F}\rightarrow {{\,\mathrm{Hom}\,}}(S,X^c)\) is surjective. By assumption, there exists some \(b\in {{\,\mathrm{Hom}\,}}(S,X)\) such that \(\left\| f(s)-b(s)\right\| \le \Phi _\psi (s)\), \(s\in S\). Let \(\xi =b(1)\), then \(b(np^z)=np^z\cdot b(1)=np^z\xi \), \(n\in \mathbb {N}_0\), \(z\in \mathbb {Z}\), whence,

$$\begin{aligned} \vert np^z\vert _p \left\| \xi -x_0\right\| =&\left\| np^z\xi -np^zx_0\right\| \le \left\| np^z\xi -f(np^z)\right\| +\left\| f(np^z)-np^zx_0\right\| \le \\ \quad&\Phi _\psi (np^z)+\varphi (np^z,np^z),\quad np^z\in S. \end{aligned}$$

For \(np^z=p^{-m}\), \(m\in \mathbb {N}_0\) we obtain \(\vert np^z\vert _p=p^m\), and

$$\begin{aligned} \left\| \xi -x_0\right\| \le \frac{1}{p^m}\Bigl (\Phi _\psi (\frac{1}{p^m})+\varphi (\frac{1}{p^m},\frac{1}{p^m})\Bigr ) \end{aligned}$$

which by Theorem 9 and (ii) from Theorem 8 tends to 0 for \(m\rightarrow \infty \). Hence, \(\left\| \xi -x_0\right\| =0\) which means \(x_0=\xi =b(1)\in X\), whence \(X^c\subseteq X\) and \(X=X^c\). \(\square \)

Corollary 2

Consider a prime p, S as in Theorem 12, X a normed space over \((\mathbb {Q},\vert ~\vert _p)\), and \(\varepsilon >0\).

If for each function \(f:S\rightarrow X\) satisfying

$$\begin{aligned} \left\| \gamma _f(s,t)\right\| \le \varepsilon ,\quad s,t\in S, \end{aligned}$$

there exists some \(b\in {{\,\mathrm{Hom}\,}}(S,X)\) such that \(\left\| f-b\right\| \le p\varepsilon \), then \(X=X^c\), thus X is complete.

Proof

This is the special case of Theorem 12 for \(\varphi =\varepsilon /3\) since then \(\psi =\psi _\varphi =\varepsilon \), \(\psi _p=(p-1)\varepsilon \), and \(\Phi _\psi =(p-1)\varepsilon \sum _{n=1}^\infty p^{-(n-1)}=p\varepsilon \). \(\square \)

Remark 4

Theorem 12 holds true also in the case when \(S=\{np^z\mid n\in \mathbb {N}_0,~z\in \mathbb {Z}\}\) is replaced by \(S'=\mathbb {Q}\) since in this case as well the additive functions defined on \(S'\) are determined uniquely by their values at 1.

Remark 5

The Hyers sequence \((p^nf(x/p^n))_{n\in \mathbb {N}_0}\) plays an important role when constructing an additive function close to f. Now it may be asked whether the sequence \((q^nf(x/q^n))_{n\in \mathbb {N}_0}\) also converges when \(q\not =p\).

First we analyze the consequences of the fact that \((q^nf(x/q^n))_{n\in \mathbb {N}_0}\) converges when p and q are relatively prime. Let p be a prime, S an Abelian semigroup which is uniquely divisible by p, and q be an integer coprime with p. Moreover assume that \(\varphi :S\times S\rightarrow [0,\infty )\) and \(f:S\rightarrow X\), X a Banach space over \((\mathbb {Q},\vert ~\vert _p)\), satisfy \(\gamma _f(x,y)\le \varphi (x,y)\), \(x,y\in S\). From the proof of Theorem 8 we get in a similar way as (9) and (10) in the proof of Theorem 3 that

$$\begin{aligned} \Vert q^{n+1}f(\frac{x}{q^{n+1}})-q^nf(\frac{x}{q^n})\Vert&= \vert q^n\vert _p\Vert f(q\frac{x}{q^{n+1}})-qf(\frac{x}{q^{n+1}})\Vert \\&\le \sum _{j=1}^{q-1}\varphi (j\frac{x}{q^{n+1}},\frac{x}{q^{n+1}})=:\varphi _q(\frac{x}{q^{n+1}}) \end{aligned}$$

and

$$\begin{aligned} \Vert q^{n+m}f(\frac{x}{q^{n+1}})-q^nf(\frac{x}{q^n})\Vert \le \sum _{j=1}^m\varphi _q(\frac{x}{q^{n+j}}). \end{aligned}$$

If \((q^nf(x/q^n))_{n\in \mathbb {N}_0}\) converges, then it is a Cauchy-sequence. In terms of \(\varphi \) this can be guaranteed for instance if \(\sum _{n=1}^\infty \varphi _q(\frac{x}{q^n})<\infty \) which is much stronger than property (i) in Theorem 8.

In what follows next we give an example of a function \(f:\mathbb {Q}\rightarrow \mathbb {Q}_p\) and a function \(\varphi :\mathbb {Q}\times \mathbb {Q}\rightarrow [0,\infty )\) satisfying (i) and (ii) from Theorem 8 for some prime p and also for \(q>1\) coprime with p such that

$$\begin{aligned}&\lim _{n \rightarrow \infty } p^nf(x/p^n)=0 \text { for all } x\in \mathbb {Q}\text { but }\\&(q^nf(x/q^n))_{n\in \mathbb {N}}\text { divergent for all } x\in \mathbb {Q}{\setminus }\{0\}. \end{aligned}$$

f is defined by \(f(0):=0\) and for \(x\not =0\) with \(\left| x\right| _p=p^m\) by \(f(x):=p^{-m/2}\) if m is even and by \(f(x):=p^{-(m-1)/2}\) if m is odd. Then it is easy to show that \(\left| f(x)\right| _p\le \sqrt{\left| x\right| _p}\) for all x implying that

$$\begin{aligned} \left| f(x+y)-f(x)-f(y)\right| _p\le \max \{\sqrt{\left| x\right| _p},\sqrt{\left| y\right| _p}\}=:\varphi (x,y),\quad x,y\in \mathbb {Q}. \end{aligned}$$

Then (i) and (ii) are satisfied for p (mainly since \(\varphi (x/p^n,y/p^n)/p^n=p^{-n/2}\varphi (x,y)\)), but also for q instead of p since \(\varphi (x/q^n,y/q^n)/q^n=\varphi (x,y)/q^n\) and the estimate \(\varphi _q(x/q^n)\le (q-1)\sqrt{\left| x\right| _p}\) holds true.

Thus by Theorem 8 the sequence \((p^nf(x/p^n))_{n\in \mathbb {N}_0}\) converges (resulting in an additive function). In this case the limit equals 0 for all x since

$$\begin{aligned} \left| p^nf(x/p^n)\right| _p\le \frac{1}{p^n}\sqrt{\left| \frac{x}{p^n}\right| _p}=\frac{\sqrt{\left| x\right| _p}}{\sqrt{p}^n}\longrightarrow 0\text { for }n\rightarrow \infty . \end{aligned}$$

Finally let \(x\not =0\) and note that \(\left| q^n\right| _p=1\) for all n. Then \(\left| x\right| _p=\left| x/q^n\right| _p\) implying that \(0\not =f(x)=f(x/q^n)\). Thus the convergence of the sequence \((q^nf(x/q^n))_{n\in \mathbb {N}_0}\) would imply the convergence of the sequence \((q^n)_{n\in \mathbb {N}_0}\). Then, however, the sequence \((q^{n+1}-q^n)_{n\in \mathbb {N}_0}\) would be a sequence converging to 0. But \(\left| q^{n+1}-q^n\right| _p=\left| q^n(q-1)\right| _p=\left| q-1\right| _p\ne 0\), \(n\in \mathbb {N}_0\), a contradiction.