Skip to main content
Log in

Well-Posedness for Fractional Cauchy Problems Involving Discrete Convolution Operators

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

This work focused on establishing sufficient conditions to guarantee the well-posedness of the following nonlinear fractional semidiscrete model:

$$\begin{aligned} {\left\{ \begin{array}{ll} {\mathbb {D}}^\beta _t u(n,t)= B u(n,t) + f(n-ct,u(n,t)),\, &{}n\in {\mathbb {Z}}, \;t>0,\\ u(n,0)=\varphi (n),\; &{}n\in {\mathbb {Z}},\\ \end{array}\right. } \end{aligned}$$

under the assumptions that \(\beta \in (0,1]\), \(c>0\) some constant, and B is a discrete convolution operator with kernel \(b\in \ell ^1(\mathbb {Z})\), which is the infinitesimal generator of the Markovian \(C_0\)-semigroup and suitable nonlinearity f. We present results concerning the existence and uniqueness of solutions, as well as establishing a comparison principle of solutions according to the respective initial values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Abadias, L., González-Camus, J., Miana, P.J., Pozo, J.C.: Large time behaviour for the heat equation on \({\mathbb{Z} }\); moments and decay rates. J. Math. Anal. Appl. 500(2), 125137 (2021)

    MathSciNet  MATH  Google Scholar 

  2. Abadias, L., de León-Contreras, M., Torrea, J.L.: Non-local fractional derivatives. Discrete and continuous. J. Math. Anal. Appl. 449(1), 734–755 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Abadias, L., Miana, P.J.: A subordination principle on Wright functions and regularized resolvent families. J. Function Spaces 2015, 158145 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  5. Bateman, H.: Some simple differential difference equations and the related functions. Bull. Am. Math. Soc. 49, 494–512 (1943)

    MathSciNet  MATH  Google Scholar 

  6. Bazhlekova, E.: Fractional Evolution Equations in Banach Spaces. Ph.D Thesis, Eindhoven University of Technology (2001)

  7. Bell, J.: Some threshold results for models of myelinated nerves. Math. Biosci. 4, 181–190 (1981)

    MathSciNet  MATH  Google Scholar 

  8. Bochner, S.: Diffusion equation and stochastic processes. Proc. Natl. Acad. Sci. USA 35, 368–370 (1949)

    MathSciNet  MATH  Google Scholar 

  9. Ciaurri, Ó., Gillespie, T.A., Roncal, L., Torrea, J.L., Varona, J.L.: Harmonic analysis associated with a discrete Laplacian. J. Anal. Math. 132, 109–131 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Ciaurri, Ó., Lizama, C., Roncal, L., Varona, J.L.: On a connection between the discrete fractional Laplacian and superdiffusion. Appl. Math. Lett. 49, 119–125 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Ciaurri, Ó., Roncal, L., Stinga, P.R., Torrea, J.L., Varona, J.L.: Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications. Adv. Math. 330, 688–738 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Engel, K., Nagel, R.: One-Parameters Semigroups For Linear Evolution Equations. Springer-Verlag, Berlin (2000)

    MATH  Google Scholar 

  13. Feintuch, A., Francis, B.: Infinite chains of kinematic points. Automatica J. IFAC 48, 901–908 (2012)

    MathSciNet  MATH  Google Scholar 

  14. González-Camus, J., Keyantuo, V., Lizama, C., Warma, M.: Fundamental solutions for discrete dynamical systems involving the fractional Laplacian. Math. Methods Appl. Sci 42, 4688–4711 (2019)

    MathSciNet  MATH  Google Scholar 

  15. González-Camus, J., Lizama, C., Miana, P.J.: Fundamental solutions for semidiscrete evolution equations via Banach algebras. Adv. Differ. Equ 2021(1), 35 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Gorenflo, R., Luchko, Y., Mainardi, F.: Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2, 383–414 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Gorenflo, R., Mainardi, F.: On Mittag–Leffler-type functions in fractional evolution processes. J. Comp. Appl. Math. 118, 283–299 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 7th edn. Elsevier, Academic Press, Burlington, San Diego, London (2007)

    MATH  Google Scholar 

  19. Hu, C., Li, B.: Spatial dynamics for lattice differential equations with a shifting habitat. J. Differ. Equ. 259, 1967–1989 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Keener, J.P.: On the formation of circulation patterns of excitation in anisotropic excitable media. J. Math. Biol. 26, 41–56 (1988)

    MathSciNet  MATH  Google Scholar 

  21. Keyantuo, V., Lizama, C., Warma, M.: Spectral criteria for solvability of boundary value problems and positivity of solutions of time-fractional differential equations. Abstr. Appl. Anal. 2013, 614328 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Keyantuo, V., Lizama, C., Warma, M.: Existence, regularity and representation of solutions of time fractional diffusion equations. Adv. Differ. Equ. 21(9–10), 837–886 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Keyantuo, V., Lizama, C., Warma, M.: Lattice dynamical systems associated with a fractional Laplacian. Numer. Funct. Anal. Optim. 40(11), 1315–1343 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Larsen, R.: Banach Algebras: An Introduction. Marcel Dekker, New York (1973)

    MATH  Google Scholar 

  25. Lizama, C., Murillo, M.: On a connection between the N-dimensional fractional Laplacian and 1-D operators on lattices. J. Math. Anal. Appl. 511(1), 126051 (2022)

    MathSciNet  MATH  Google Scholar 

  26. Lizama, C., Roncal, L.: Hölder–Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian. Discrete Contin. Dyn. Syst. Ser. A 38(3), 1365–1403 (2018)

    MATH  Google Scholar 

  27. Newell, A.C., Whitehead, J.A.: Finite bandwith, finite amplitude convection. J. Fluid Mech. 38, 279–303 (1969)

    MathSciNet  MATH  Google Scholar 

  28. Ortigueira, M.: Fractional central differences and derivatives. J. Vib. Control 14(9–10), 1255–1266 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983)

    MATH  Google Scholar 

  30. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, CA (1999)

    MATH  Google Scholar 

  31. Prüss, J.: Evolutionary Integral Equations and Applications. Birkhäuser, Basel (1993)

    MATH  Google Scholar 

  32. Rudnicki, R., Pichór, K., Tyran-Kamińska, M.: Markov semigroups and their applications. In: Garbaczewski, P., Olkiewicz, R. (eds.) Dynamics of Dissipation. Lecture Notes in Physics, vol. 597. Springer, Berlin, Heidelberg (2002)

    Google Scholar 

  33. Samko, G., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York, London (1993)

    MATH  Google Scholar 

  34. Segel, L.A.: Distant sidewalls cause slow amplitude modulation of cellular convection. J. Fluid Mech. 38, 203–224 (1969)

    MATH  Google Scholar 

  35. Slavik, A.: Mixing problems with many tanks. Am. Math. Monthly 120, 806–821 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Slavík, A.: Asymptotic behavior of solutions to the semidiscrete diffusion equation. Appl. Math. Lett. 106, 106392 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Slavík, A., Stehlík, P.: Explicit solutions to dynamic diffusion-type equations and their time integrals. Appl. Math. Comput. 234, 486–505 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Slavík, A., Stehlík, P.: Dynamic diffusion-type equations on discrete-space domains. J. Math. Anal. Appl. 427(1), 525–545 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Stehlík, P., Volek, J.: Transport equation on semidiscrete domains and Poisson–Bernoulli processes. J. Differ. Equ. Appl. 19(3), 439–456 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Tarasov, V.E.: Lattice fractional calculus. Appl. Math. Comp. 257, 12–33 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Tarasov, V.E.: Fractional-order difference equations for physical lattices and some applications. J. Math. Phys. 56, 103506 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Tarasov, V.E.: Exact discretization of fractional Laplacian. Comp. Math. Appl. 73, 855–863 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Vallée, O., Soares, M.: Airy Functions and Applications to Physics, 2nd edn. Imperial College Press, London (2010)

    MATH  Google Scholar 

  44. Volek, J.: Maximum and minimum principles for nonlinear transport equations on discrete-space domains. Electron. J. Differ. Equ. 2014(78), 1–13 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Wright, E.M.: The generalized Bessel function of order greater than one. Quart. J. Math. 11, 36–48 (1940)

    MathSciNet  MATH  Google Scholar 

  46. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328(2), 1075–1081 (2007)

    MathSciNet  MATH  Google Scholar 

  47. Yosida, K.: Functional Analysis. Springer Verlag, Berlin, Heidelberg, New York (1980)

    MATH  Google Scholar 

  48. Zinner, B., Harris, G., Hudson, W.: Traveling wave fronts for the discrete Fisher’s equation. J. Differ. Equ. 105, 46–62 (1993)

    MATH  Google Scholar 

Download references

Funding

Funder name: Agencia Nacional de Investigación y Desarrollo. Grant no. FONDECYT INICIACIÓN 2023, 11230182. Funder name: Universidad Tecnológica Metropolitana. Grant no. Competition for Research Regular Projects, year 2022, code LPR22-08. Grant recipient: Jorge González-Camus.

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author wrote the main manuscript text.

Corresponding author

Correspondence to Jorge González-Camus.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author has been partially supported by ANID FONDECYT INICIACIÓN 2023, Grant 11230182 and by the Competition for Research Regular Projects, year 2022, code LPR22-08, Universidad Tecnológica Metropolitana.

Appendix

Appendix

In this appendix, we give the basic concepts of the special functions involved in the development of this study.

1.1 Wright Function \(\Phi _{\gamma }\)

The Wright type function with one parameter from [16, Formula (28)] (see also [30, 33, 45]) is given by

$$\begin{aligned} \Phi _{\alpha }(z):= \sum _{n=0}^{\infty } \frac{(-z)^n}{n! \Gamma (-\alpha n +1 -\alpha )} = \frac{1}{2\pi i} \int \limits _{\gamma } \mu ^{\alpha -1} e^{\mu - z \mu ^{\alpha }} \text {d}\mu , \quad 0< \alpha <1,\nonumber \\ \end{aligned}$$
(4.5)

where \(\gamma \) is a contour which starts and ends at \(-\infty \) and encircles the origin once counterclockwise. This special case has sometimes been called Mainardi function.

Remark 4.5

Let \(z\in {\mathbb {C}}\), \(t>0\) and \(0<\alpha ,\gamma <1\). Then the following properties hold:

  1. (i)

    \(\displaystyle E_{\gamma ,1}(z)=\int \limits _{0}^{\infty }\Phi _{\gamma }(t)e^{zt}\text {d}t\).

  2. (ii)

    \(\displaystyle \Phi _{\alpha }(t) \ge 0\).

  3. (iii)

    \(\displaystyle \int \limits _{0}^{\infty }\Phi _{\alpha }(t)\text {d}t =1\).

It follows from (ii) and (iii) that \(\Phi _{\alpha }\) is a probability density function on \({\mathbb {R}}_0^+\). Actually, the Wright function has been used for models in stochastic processes [16, 17].

1.2 Lévy Function \(f_{t,\alpha }\)

We present the following function, called stable Lévy function, defined for \(0<\alpha <1\) by

$$\begin{aligned} f_{t,\alpha }(\lambda ) = {\left\{ \begin{array}{ll} \displaystyle \frac{1}{2\pi i} \int _{\sigma - i \infty }^{ \sigma + i \infty } e^{ z \lambda - t z^{\alpha }} \text {d}z, \;\;\;\; \sigma>0, \quad t>0, &{}\lambda \ge 0, \\ 0 \quad &{}\lambda <0, \end{array}\right. } \end{aligned}$$
(4.6)

where the branch of \(z^{\alpha }\) is taken so that \(\text{ Re }(z^{\alpha })>0\) for \(\text{ Re }(z)>0.\) This branch is single valued in the z-plane cut along the negative real axis. These functions were introduced by Bochner [8] in the study of certain stochastic processes. Yosida [47] used them systematically in the study of \(C_0\)-semigroups generated by fractional powers of uniformly bounded \(C_0\)-semigroups of linear operators. The Lévy functions are the density functions associated with the stable Lévy processes in the rotational invariant case and are related to the fractional Brownian motion.

Remark 4.6

The following properties hold:

  1. (i)

    \(\displaystyle \int _0^{\infty } e^{-\lambda a} f_{t,\alpha }(\lambda ) \text {d}\lambda = e^{-ta^{\alpha }}, \quad t>0, \quad a>0,\quad 0<\alpha <1.\)

  2. (ii)

    \(\displaystyle f_{t,\alpha }(\lambda ) \ge 0, \quad \lambda>0, \,\, t>0, \quad 0<\alpha <1.\)

  3. (iii)

    \(\displaystyle \int _0^{\infty } f_{t,\alpha }(\lambda ) \text {d}\lambda = 1, \quad t>0, \quad 0<\alpha <1.\)

For a proof of (i)–(iii), see [47, pp. 260–262].

1.3 Bessel Function \(I_\nu \)

For \(\nu \in {\mathbb {R}}\), the modified Bessel functions of the first kind is defined by

$$\begin{aligned} I_{\nu }(x)=\sum \limits _{n=0}^{\infty }\frac{1}{\Gamma (n+\nu +1)n!}\left( \frac{x}{2}\right) ^{2n+\nu }. \end{aligned}$$
(4.7)

It is clear from the Definition 4.7 that \(I_n(x) \ge 0, \quad n\in {\mathbb {Z}}, \,\, x\ge 0\). The following properties can be found in [18, Formula 8.511], [4].

  1. (1)

    \( \sum _{n\in {\mathbb {Z}}} I_n(x)z^{n} = \displaystyle e^{\frac{x}{2}(z+\frac{1}{z})}, \quad z \in {\mathbb {C}}{\setminus }\{0\}\).

  2. (2)

    \(I_{-n}(x)=I_{n}(x)=(-1)^nI_n(-x)\).

  3. (3)

    \( I_n(x+y)=\sum _{k\in {\mathbb {Z}}}I_{n-k}(x)I_k(y)\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Camus, J. Well-Posedness for Fractional Cauchy Problems Involving Discrete Convolution Operators. Mediterr. J. Math. 20, 243 (2023). https://doi.org/10.1007/s00009-023-02443-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-023-02443-w

Keywords

Mathematics Subject Classification

Navigation