Skip to main content
Log in

Continuous Dependence of Renormalized Solution for Nonlinear Degenerate Parabolic Problems in the Whole Space

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider the general degenerate parabolic equation:

$$u_t - \Delta b(u) + div\ \tilde{F}(u) = f \qquad{\rm in} \ \ Q\ =\ ]0,T[ \, \times \, =\mathbb{R}^N , \ \ T > 0. $$

We suppose that the flux \({\tilde{F}}\) is continuous, b is nondecreasing continuous, and both are not necessarily Lipschitz continuous functions. The well-posedness (existence and uniqueness) of the renormalized solution of the associated Cauchy problem for L 1 initial data and source term is studied in Maliki and Ouédraigo (Ann. Fac, Sci. Toulouse Math. (6) 17(3):597–611, 2008) under a structure condition \({\tilde{F}(r)=F(b(r))}\) and an assumption on the modulus of continuity of b. In the same framework, our aim is here to establish the continuous dependence of this renormalized solution with respect to the data. The novelty is the fact that we are working in the whole space \({\Omega=\mathbb{R}^{N}}\) with unbounded data (u 0, f) and b, \({\tilde{F}}\) are not Lipschitz functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt H.W., Luckhauss S.: Quasi-linear elliptic–parabolic differential equations. Math. Z. 183, 311–341 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andreianov B.P., Bénilan P., Kruzhkov S.N.: L 1-theory of scalar conservation law with discontinuous flux fonction. J. Funct. Anal. 171(1), 15–33 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bendahmane, M., Karlsen, K.H.: Renormalized solutions for quasilinear anisotropic degenerate parabolic equations. Siam J. Marth. Anal. 36(no.2), 405–422 (2004)

    Google Scholar 

  4. Bénilan, P., Boccardo, L.,Gallouët, T., Gariepy, R., Pierre, M. and Vazquez, J.L.: An L 1−theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4). 22, no.2, 241–273 (1995).

  5. Bénilan P., Kruzhkov S.N.:. Russian Acad. Sci. Dokl. Math. 50(3), 391–396 (1995)

    MathSciNet  Google Scholar 

  6. Bénilan P., Touré H.: Sur l’équation générale \({u_{t} =a(.,u,\phi(.,u)_{x})_{x}+v}\) dans L 1. II. Le problèmed’évolution. Ann. Inst. H. Poincaré Anal. Non Linéaire. 12(6), 727–761 (1995)

    MATH  Google Scholar 

  7. Bénilan P., Wittbold P.: On mild and weak solutions of elliptic-parabolic problems. Adv. Differ. Equ. 1(6), 1053–1073 (1996)

    MATH  Google Scholar 

  8. Blanchart D., Murat F.: Renormalized solutions of nonlinear parabolic problems with L 1 data: existence and uniqueness. Proc. R. Soc. Edinb. A. 127, 1137–1152 (1997)

    Article  Google Scholar 

  9. Blanchart D., Redouane H.: Solutions renormalisées d’équations paraboliques à deux non linéaritées. C.R.A.S. Paris 319, 831–847 (1994)

    Google Scholar 

  10. Bürger R., Evje S., Karlsen K.H.: On strongly degenerate convection–diffusion problems modeling sedimentation–consolidation processes. J. Math. Anal. Appl. 247(2), 517–556 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Butos, M.C., Concha, F., Bürger, R., Tory, E.M.: Sedimentation and thickenning: phenomenological foundation and mathematical theory. Kluwer Academic, Dordrecht (1999)

  12. Carrillo J.: Entropy solutions for nonlinear degenerate problems. Arch. Rational Mech. Anal. 147(4), 269–361 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chavent, G., Jaffre, J.: Mathematical models and finite elements for reservoir simulation. North Holland, Amsterdam (1986)

  14. Diaz J.I., Thelin F.: On a nonlinear parabolic problem arising in some models related to turbulent flows. SIAM. J. Math. Anal. 25, 919–924 (1994)

    Article  Google Scholar 

  15. Kruzhkov S.N.: First order quasi-linear equations in several independent variables. Transl. Math. USSR Sbornik. 10(2), 217–243 (1970)

    Article  MATH  Google Scholar 

  16. Lions, P.L., Perthame, B., Tadmor, E.: Formulation cinétique des lois de conservation scalaires multidimensionnelles. C.R., Acad. Sci. Paris, Série I Math. 312:97–102 (1991)

  17. Lions P.L., Perthame B., Tadmor E.: A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Am. Math. Soc. 7, 169–191 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Maliki M.: Continuous dependence of the entropy solution of general parabolic equation. Ann. Fac. Sci. Toulouse. 15(no.3), 589–598 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Maliki, M., Ouédraogo, A. Renormalized solution for nonlinear degenerate problems in the whole space. Ann. Fac. Sci. Toulouse Math. (6). 17, no.3, 597–611 (2008)

  20. Maliki M., Touré H.: Dépendence continue de solutions généralisées locales. Ann. Fac. Sci. Toulouse. Vol.X. 4, 701–711 (2001)

    Article  Google Scholar 

  21. Maliki, M., Touré, H.: Uniqueness of entropy solutions for nonlinear degenerate parabolic problem. J. Evol. Equ. 3(4), 603–622 (2003)

    Google Scholar 

  22. Otto, F.: L 1. Contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differ. Equ. 131, 20–38 (1996)

  23. Otto F.: Initial-boundary value problem for a scalar conservation law. C.R. Acad. Sci. Paris Sér. I Math. 322(8), 729–734 (1996)

    MATH  MathSciNet  Google Scholar 

  24. Perthame B.: Uniqueness and error estimates in first order quasilear conservation laws via the kinetic entropy defect measure. J. Math. Pure Appl. 77, 1055–1064 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Perthame, B.: Kinetic formulation of conservation laws. Oxford University Press, Oxford (2009)

  26. Yin J.: On the uniqueness and stability of BV solutions for nonlinear diffusion equations. Comm. Part. Differ. Equ. 15(12), 1671–1683 (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adama Ouédraogo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouédraogo, A., De Dieu Zabsonré, J. Continuous Dependence of Renormalized Solution for Nonlinear Degenerate Parabolic Problems in the Whole Space. Mediterr. J. Math. 11, 873–880 (2014). https://doi.org/10.1007/s00009-013-0328-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-013-0328-3

Mathematics Subject Classification (2000)

Keywords

Navigation