Skip to main content
Log in

Möbius Transformation for Left-Derivative Quaternion Holomorphic Functions

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Holomorphic quaternion functions only admit affine functions; thus, the Möbius transformation for these functions, which we call quaternionic holomorphic transformation (QHT), only comprises similarity transformations. We determine a general group \({\mathsf{X}}\) which has the group \({\mathsf{G}}\) of QHT as a particular case. Furthermore, we observe that the Möbius group and the Heisenberg group may be obtained by making \({\mathsf{X}}\) more symmetric. We provide matrix representations for the group \({\mathsf{X}}\) and for its algebra \({\mathfrak{x}}\). The Lie algebra is neither simple nor semi-simple, and so it is not classified among the classical Lie algebras. We prove that the group \({\mathsf{G}}\) comprises \({\mathsf{SU}(2,\mathbb{C})}\) rotations, dilations and translations. The only fixed point of the QHT is located at infinity, and the QHT does not admit a cross-ratio. Physical applications are addressed at the conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler S.L.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  2. de Alfaro V., Fubini S., Furlan G.: Conformal invariance in quantum mechanics. Nuovo Cim. A 34, 569 (1976)

    Article  ADS  Google Scholar 

  3. Anderson J.: Hyperbolic Geometry. Springer, Berlin (2008)

    Google Scholar 

  4. Beardon A.F.: The Geometry of Discrete Groups. Springer, Berlin (1995)

    MATH  Google Scholar 

  5. Blumenhagen R., Plauschinn E.: Introduction to conformal field theory. Lect. Notes Phys. 779, 1–256 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Binz E., Pods S.: The Geometry of Heisenberg Groups. American Mathematical Society, Providence (2008)

    Book  MATH  Google Scholar 

  7. Bisi C., Gentili G.: Moebius transformations and the Poincare distance in the quaternionic setting. Indiana Univ. Math. J. 58, 2729–2764 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao W., Parker J.R., Wang X.: On the classification of quaternionic Möbius transformations. Math. Proc. Camb. Phil. Soc. 137, 349 (2004)

    Article  MATH  Google Scholar 

  9. Deavours C.A.: Quaternion Calculus. Am. Math. Montly 80, 995–1008 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Leo S., Rotelli P.: Quaternionic analyticity. Appl. Math. Lett. 16, 1077–1081 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Evans M., Gursey F., Ogievetsky V.: From 2-D conformal to 4-D selfdual theories: quaternionic analyticity. Phys. Rev. D 47, 3496–3508 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  12. Fubini S.: A new approach to conformal invariant field theories. Nuovo Cim. A 34, 521 (1976)

    Article  ADS  Google Scholar 

  13. Gentili G., Stoppato C., Struppa D.C.: Regular Functions of a Quaternionic Variable. Springer Monographs in Mathematics. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  14. Giardino, S., Teotonio-Sobrinho, P.: A non-associative quaternion scalar field theory. Mod. Phys. Lett. A28(35), 1350163 (2013). arXiv:1211.5049 [math-ph]

  15. Giardino, S.: Four-dimensional conformal field theory using quaternions. arXiv:1509.07779 [hep-th] (2015)

  16. Ginsparg, P.H.: Applied conformal field theory. Les Houches summer school (1988). arXiv:hep-th/9108028

  17. Gursey F., Tze H.C.: Complex and Quaternionic Analyticity in Chiral and Gauge Theories. Part 1. Ann. Phys. 128, 29 (1980)

    Article  ADS  MATH  Google Scholar 

  18. Gürlebeck K., Sprössig W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, New York (1998)

    MATH  Google Scholar 

  19. Gwynne E., Libine M.: On a quaternionic analogue of the cross-ratio. Adv. App. Cliff. Alg. 22, 1041–1053 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hertrich-Jeromin U.: Introduction to Möbius Differential Geometry. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  21. Huang H.: Discrete subgroups of Möbius transformations. J. Math. Anal. Appl. 397, 233–241 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kleban P., Vassileva I.: Conformal field theory and hyperbolic geometry. Phys. Rev. Lett. 72, 3929–3932 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Lavicka R., O’Farrell A.G., Short I.: Reversible maps in the group of quaternionic Möbius transformations. Math. Proc. Camb. Phil. Soc. 143, 57 (2007)

    Article  MATH  Google Scholar 

  24. Lounesto P.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  25. Porteous I.R.: Clifford Algebras and the Classical Groups. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  26. Stoppato C.: Regular Moebius transformations of the space of quaternions. Ann. Glob. Anal. Geom. 190, 387–401 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sudbery A.: Quaternionic analysis. Math. Proc. Camb. Phil. Soc. 85, 199–225 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  28. Waterman P.L.: Möbius transformations in several dimensions. Adv. Math. 101, 87–113 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wilker J.B.: The quaternion formalism for Möbius groups in four or fewer dimensions. Lin. Alg. Appl. 190, 99–136 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Giardino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giardino, S. Möbius Transformation for Left-Derivative Quaternion Holomorphic Functions. Adv. Appl. Clifford Algebras 27, 1161–1173 (2017). https://doi.org/10.1007/s00006-016-0673-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-016-0673-y

Keywords

Navigation