Skip to main content
Log in

Neutrino-electron scattering in noncommutative space

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Neutral particles can couple with the U(1) gauge field in the adjoint representation at the tree level if the space-time coordinates are noncommutative (NC). Considering neutrino-photon coupling in the NC QED framework, we obtain the differential cross section of neutrino-electron scattering. Similar to the magnetic moment effect, one of the NC terms is proportional to \( \frac{1}{T} \), where T is the electron recoil energy. Therefore, this scattering provides a chance to achieve a stringent bound on the NC scale in low energy by improving the sensitivity to the smaller electron recoil energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [SPIRES].

    Article  ADS  Google Scholar 

  2. Super-Kamiokande collaboration, Y. Fukuda et al., Measurements of the solar neutrino flux from Super-Kamiokande’s first 300 days, Phys. Rev. Lett. 81 (1998) 1158 [hep-ex/9805021] [SPIRES].

    Article  ADS  Google Scholar 

  3. Super-Kamiokande collaboration, S. Fukuda et al., Determination of Solar Neutrino Oscillation Parameters using 1496 Days of Super-Kamiokande-I Data, Phys. Lett. B 539 (2002) 179 [hep-ex/0205075] [SPIRES].

    ADS  Google Scholar 

  4. Super-Kamiokande collaboration, M.B. Smy et al., Precise Measurement of the Solar Neutrino Day/Night and Seasonal Variation in Super-Kamiokande-I, Phys. Rev. D 69 (2004) 011104 [hep-ex/0309011] [SPIRES].

    ADS  Google Scholar 

  5. Super-Kamiokande collaboration, Y. Ashie et al., Evidence for an oscillatory signature in atmospheric neutrino oscillation, Phys. Rev. Lett. 93 (2004) 101801 [hep-ex/0404034] [SPIRES].

    Article  ADS  Google Scholar 

  6. C.W. Walter, The Super-Kamiokande Experiment, arXiv:0802.1041 [SPIRES].

  7. A.B. Balantekin, Neutrino magnetic moment, AIP Conf. Proc. 847 (2006) 128 [hep-ph/0601113] [SPIRES].

    Article  ADS  Google Scholar 

  8. MUNU collaboration, Z. Daraktchieva et al., Final results on the neutrino magnetic moment from the MUNU experiment, Phys. Lett. B 615 (2005) 153 [hep-ex/0502037] [SPIRES].

    ADS  Google Scholar 

  9. TEXONO collaboration, H.B. Li et al., New Limits on Neutrino Magnetic Moments from the Kuo-Sheng Reactor Neutrino Experiment, Phys. Rev. Lett. 90 (2003) 131802 [hep-ex/0212003] [SPIRES].

    Article  ADS  Google Scholar 

  10. TEXONO collaboration, H.T. Wong et al., Search of Neutrino Magnetic Moments with a High-Purity Germanium Detector at the Kuo-Sheng Nuclear Power Station, Phys. Rev. D 75 (2007) 012001 [hep-ex/0605006] [SPIRES].

    ADS  Google Scholar 

  11. TEXONO collaboration, M. Deniz et al., Constraints on Non-Standard Neutrino Interactions and Unparticle Physics with Neutrino-Electron Scattering at the Kuo-Sheng Nuclear Power Reactor, Phys. Rev. D 82 (2010) 033004 [arXiv:1006.1947] [SPIRES].

    ADS  Google Scholar 

  12. M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. X. Calmet, M. Graesser and S.D.H. Hsu, Minimum length from quantum mechanics and general relativity, Phys. Rev. Lett. 93 (2004) 211101 [hep-th/0405033] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP 02 (2000) 020 [hep-th/9912072] [SPIRES].

    Article  ADS  Google Scholar 

  15. A. Matusis, L. Susskind and N. Toumbas, The IR/UV connection in the non-commutative gauge theories, JHEP 12 (2000) 002 [hep-th/0002075] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. S.M. Carroll, J.A. Harvey, V.A. Kostelecky, C.D. Lane and T. Okamoto, Noncommutative field theory and Lorentz violation, Phys. Rev. Lett. 87 (2001) 141601 [hep-th/0105082] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. M.M. Sheikh-Jabbari, Discrete symmetries (C,P,T) in noncommutative field theories, Phys. Rev. Lett. 84 (2000) 5265 [hep-th/0001167][SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. P. Aschieri, B. Jurčo, P. Schupp and J. Wess, Non-commutative GUTs, standard model and C, P, T, Nucl. Phys. B 651 (2003) 45 [hep-th/0205214] [SPIRES].

    Article  ADS  Google Scholar 

  19. M. Chaichian, M.M. Sheikh-Jabbari and A. Tureanu, Hydrogen atom spectrum and the Lamb shift in noncommutative QED, Phys. Rev. Lett. 86 (2001) 2716 [hep-th/0010175] [SPIRES].

    Article  ADS  Google Scholar 

  20. A. Stern, Noncommutative Point Sources, Phys. Rev. Lett. 100 (2008) 061601 [arXiv:0709.3831] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Haghighat, S.M. Zebarjad and F. Loran, Positronium hyperfine splitting in non-commutative space at the order α 6, Phys. Rev. D 66 (2002) 016005 [hep-ph/0109105] [SPIRES].

    ADS  Google Scholar 

  22. M. Haghighat and F. Loran, Three body bound state in noncommutative space, Phys. Rev. D 67 (2003) 096003 [SPIRES].

    ADS  Google Scholar 

  23. M. Burić, D. Latas, V. Radovanović and J. Trampetic, Nonzero Z → γγ decays in the renormalizable gauge sector of the noncommutative standard model, Phys. Rev. D 75 (2007) 097701 [SPIRES].

    ADS  Google Scholar 

  24. E.O. Iltan, The Z → ℓ + and W → ν + decays in the noncommutative standard model, Phys. Rev. D 66 (2002) 034011 [hep-ph/0204332] [SPIRES].

    ADS  Google Scholar 

  25. B. Melic, K. Passek-Kumericki and J. Trampetic, Quarkonia decays into two photons induced by the space-time non-commutativity, Phys. Rev. D 72 (2005) 054004 [hep-ph/0503133] [SPIRES].

    ADS  Google Scholar 

  26. B. Melic, K. Passek-Kumericki and J. Trampetic, K → πγ decay and space-time noncommutativity, Phys. Rev. D 72 (2005) 057502 [hep-ph/0507231] [SPIRES].

    ADS  Google Scholar 

  27. C. Tamarit and J. Trampetic, Noncommutative fermions and quarkonia decays, Phys. Rev. D 79 (2009) 025020 [arXiv:0812.1731] [SPIRES].

    ADS  Google Scholar 

  28. N. Mahajan, t → bW in noncommutative standard model, Phys. Rev. D 68 (2003) 095001 [hep-ph/0304235] [SPIRES].

    ADS  Google Scholar 

  29. M. Mohammadi Najafabadi, Semi-Leptonic Decay of a Polarized Top Quark in the Noncommutative Standard Model, Phys. Rev. D 74 (2006) 025021 [hep-ph/0606017] [SPIRES].

    ADS  Google Scholar 

  30. M. Mohammadi Najafabadi, Noncommutative Standard Model in Top Quark Sector, Phys. Rev. D 77 (2008) 116011 [arXiv:0803.2340] [SPIRES].

    ADS  Google Scholar 

  31. OPAL collaboration, G. Abbiendi et al., Test of non-commutative QED in the process e + e → γγ at LEP, Phys. Lett. B 568 (2003) 181 [hep-ex/0303035] [SPIRES].

    ADS  Google Scholar 

  32. J.L. Hewett, F.J. Petriello and T.G. Rizzo, Signals for non-commutative interactions at linear colliders, Phys. Rev. D 64 (2001) 075012 [hep-ph/0010354] [SPIRES].

    ADS  Google Scholar 

  33. P.K. Das, N.G. Deshpande and G. Rajasekaran, Móller and Bhaba scattering in the noncommutative SM, Phys. Rev. D 77 (2008) 035010 [arXiv:0710.4608] [SPIRES].

    ADS  Google Scholar 

  34. J.-i. Kamoshita, Probing noncommutative space-time in the laboratory frame, Eur. Phys. J. C 52 (2007) 451 [hep-ph/0206223] [SPIRES].

    Article  ADS  Google Scholar 

  35. Y. Liao and C. Dehne, Some phenomenological consequences of the time-ordered perturbation theory of QED on noncommutative spacetime, Eur. Phys. J. C 29 (2003) 125 [hep-ph/0211425] [SPIRES].

    Article  ADS  Google Scholar 

  36. M. Haghighat, N. Okada and A. Stern, Location and Direction Dependent Effects in Collider Physics from Noncommutativity, Phys. Rev. D 82 (2010) 016007 [arXiv:1006.1009] [SPIRES].

    ADS  Google Scholar 

  37. A. Alboteanu, T. Ohl and R. Ruckl, Probing the noncommutative standard model at hadron colliders, Phys. Rev. D 74 (2006) 096004 [hep-ph/0608155] [SPIRES].

    ADS  Google Scholar 

  38. T. Ohl and J. Reuter, Testing the noncommutative standard model at a future photon collider, Phys. Rev. D 70 (2004) 076007 [hep-ph/0406098] [SPIRES].

    ADS  Google Scholar 

  39. M.M. Ettefaghi, Singlet particles as cold dark matter in noncommutative space-time, Phys. Rev. D 79 (2009) 065022 [arXiv:0903.1708] [SPIRES].

    ADS  Google Scholar 

  40. M. Haghighat, Bounds on the Parameter of Noncommutativity from Supernova SN1987A, Phys. Rev. D 79 (2009) 025011 [arXiv:0901.1069] [SPIRES].

    ADS  Google Scholar 

  41. R. Horvat and J. Trampetic, Constraining spacetime noncommutativity with primordial nucleosynthesis, Phys. Rev. D 79 (2009) 087701 [arXiv:0901.4253] [SPIRES].

    ADS  Google Scholar 

  42. E. Bavarsad et al., Generation of circular polarization of the CMB, Phys. Rev. D 81 (2010) 084035 [arXiv:0912.2993] [SPIRES].

    ADS  Google Scholar 

  43. H. Grosse and Y. Liao, Anomalous C-violating three photon decay of the neutral pion in noncommutative quantum electrodynamics, Phys. Lett. B 520 (2001) 63 [hep-ph/0104260] [SPIRES].

    ADS  Google Scholar 

  44. H. Grosse and Y. Liao, Pair production of neutral Higgs bosons through noncommutative QED interactions at linear colliders, Phys. Rev. D 64 (2001) 115007 [hep-ph/0105090] [SPIRES].

    ADS  Google Scholar 

  45. P. Schupp, J. Trampetic, J. Wess and G. Raffelt, The photon neutrino interaction in non-commutative gauge field theory and astrophysical bounds, Eur. Phys. J. C 36 (2004) 405 [hep-ph/0212292] [SPIRES].

    Article  ADS  Google Scholar 

  46. M. Haghighat, M.M. Ettefaghi and M. Zeinali, Photon neutrino scattering in non-commutative space, Phys. Rev. D 73 (2006) 013007 [hep-ph/0511042] [SPIRES].

    ADS  Google Scholar 

  47. M.M. Ettefaghi and M. Haghighat, Massive Neutrino in Non-commutative Space-time, Phys. Rev. D 77 (2008) 056009 [arXiv:0712.4034] [SPIRES].

    ADS  Google Scholar 

  48. Neutrino Factory/Muon Collider collaboration, C.H. Albright et al., The neutrino factory and beta beam experiments and development, physics/0411123 [SPIRES].

  49. J. Madore, S. Schraml, P. Schupp and J. Wess, Gauge theory on noncommutative spaces, Eur. Phys. J. C 16 (2000) 161 [hep-th/0001203] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. B. Jurčo, S. Schraml, P. Schupp and J. Wess, Enveloping algebra valued gauge transformations for non-Abelian gauge groups on non-commutative spaces, Eur. Phys. J. C 17 (2000) 521 [hep-th/0006246] [SPIRES].

    ADS  Google Scholar 

  51. B. Jurčo, L. Möller, S. Schraml, P. Schupp and J. Wess, Construction of non-Abelian gauge theories on noncommutative spaces, Eur. Phys. J. C 21 (2001) 383 [hep-th/0104153] [SPIRES].

    ADS  Google Scholar 

  52. L. Möller, Second order of the expansions of action functionals of the noncommutative standard model, JHEP 10 (2004) 063 [hep-th/0409085] [SPIRES].

    Article  Google Scholar 

  53. M.M. Ettefaghi and M. Haghighat, Lorentz Conserving Noncommutative Standard Model, Phys. Rev. D 75 (2007) 125002 [hep-ph/0703313] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  54. M. Chaichian, P. Prešnajder, M.M. Sheikh-Jabbari and A. Tureanu, Noncommutative gauge field theories: A no-go theorem, Phys. Lett. B 526 (2002) 132 [hep-th/0107037] [SPIRES].

    ADS  Google Scholar 

  55. M. Chaichian, P. Prešnajder, M.M. Sheikh-Jabbari and A. Tureanu, Noncommutative Standard Model: Model Building, Eur. Phys. J. C 29 (2003) 413 [hep-th/0107055] [SPIRES].

    ADS  Google Scholar 

  56. X. Calmet, B. Jurčo, P. Schupp, J. Wess and M. Wohlgenannt, The standard model on non-commutative space-time, Eur. Phys. J. C 23 (2002) 363 [hep-ph/0111115] [SPIRES].

    ADS  Google Scholar 

  57. B. Melic, K. Passek-Kumericki, J. Trampetic, P. Schupp and M. Wohlgenannt, The standard model on non-commutative space-time: Electroweak currents and Higgs sector, Eur. Phys. J. C 42 (2005) 483 [hep-ph/0502249] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. J. Gomis and T. Mehen, Space-time noncommutative field theories and unitarity, Nucl. Phys. B 591 (2000) 265 [hep-th/0005129] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. A. de Gouvêa and J. Jenkins, What can we learn from neutrino electron scattering?, Phys. Rev. D 74 (2006) 033004 [hep-ph/0603036] [SPIRES].

    ADS  Google Scholar 

  60. W.J. Marciano and Z. Parsa, Neutrino-Electron Scattering Theory, J. Phys. G 29 (2003) 2629 [hep-ph/0403168] [SPIRES].

    ADS  Google Scholar 

  61. A.B. Balantekin and K.O. Ozansoy, Constraints on Unparticles from Low Energy Neutrino-Electron Scattering, Phys. Rev. D 76 (2007) 095014 [arXiv:0710.0028] [SPIRES].

    ADS  Google Scholar 

  62. P. Vogel and J. Engel, Neutrino Electromagnetic Form-Factors, Phys. Rev. D 39 (1989) 3378 [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Ettefaghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ettefaghi, M.M., Shakouri, T. Neutrino-electron scattering in noncommutative space. J. High Energ. Phys. 2010, 131 (2010). https://doi.org/10.1007/JHEP11(2010)131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)131

Keywords