Skip to main content
Log in

Very special relativity as relativity of dark matter: the Elko connection

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In the very special relativity (VSR) proposal by Cohen and Glashow, it was pointed out that invariance under HOM (2) is both necessary and sufficient to explain the null result of the Michelson-Morely experiment. It is the quantum field theoretic demand of locality, or the requirement of P, T, CP, or CT invariance, that makes invariance under the Lorentz group a necessity. Originally it was conjectured that VSR operates at the Planck scale; we propose that the natural arena for VSR is at energies similar to the standard model, but in the dark sector. To this end we provide an ab initio spinor representation invariant under the SIM (2) avatar of VSR and construct a mass dimension one fermionic quantum field of spin one half. This field turns out to be a very close sibling of Elko and it exhibits the same striking property of intrinsic darkness with respect to the standard model fields. In the new construct, the tension between Elko and Lorentz symmetries is fully resolved. We thus entertain the possibility that the symmetries underlying the standard model matter and gauge fields are those of Lorentz, while the event space underlying the dark matter and the dark gauge fields supports the algebraic structure underlying VSR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G. Cohen and S.L. Glashow, Very special relativity, Phys. Rev. Lett. 97 (2006) 021601 [hep-ph/0601236] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. D.V. Ahluwalia and D. Grumiller, Dark matter: A spin one half fermion field with mass dimension one?, Phys. Rev. D 72 (2005) 067701 [hep-th/0410192] [SPIRES].

    ADS  Google Scholar 

  3. D.V. Ahluwalia and D. Grumiller, Spin half fermions with mass dimension one: Theory, phenomenology and dark matter, JCAP 07 (2005) 012 [hep-th/0412080] [SPIRES].

    ADS  Google Scholar 

  4. R. da Rocha and W.A. Rodrigues Jr., Where are ELKO spinor fields in Lounesto spinor field classification?, Mod. Phys. Lett. A 21 (2006) 65 [math-ph/0506075] [SPIRES].

    ADS  Google Scholar 

  5. D.V. Ahluwalia, C.-Y. Lee, D. Schritt and T.F. Watson, Elko as self-interacting fermionic dark matter with axis of locality, Phys. Lett. B 687 (2010) 248 [arXiv:0804.1854] [SPIRES].

    ADS  Google Scholar 

  6. L. Fabbri, Causal propagation for ELKO fields, Mod. Phys. Lett. A 25 (2010) 151 [arXiv:0911.2622] [SPIRES].

    ADS  Google Scholar 

  7. C.G. Boehmer, J. Burnett, D.F. Mota and D.J. Shaw, Dark spinor models in gravitation and cosmology, JHEP 07 (2010) 053 [arXiv:1003.3858] [SPIRES].

    Article  ADS  Google Scholar 

  8. Z.K. Silagadze, On the Finslerian extension of the Schwarzschild metric, arXiv:1007.4632 [SPIRES].

  9. S. Shankaranarayanan, What-if inflaton is a spinor condensate?, Int. J. Mod. Phys. D 18 (2009) 2173 [arXiv:0905.2573] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. H. Wei, Spinor Dark Energy and Cosmological Coincidence Problem, arXiv:1002.4230 [SPIRES].

  11. C.G. Boehmer, The Einstein-Elko system – Can dark matter drive inflation?, Annalen Phys. 16 (2007) 325 [gr-qc/0701087] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  12. C.G. Boehmer and D.F. Mota, CMB Anisotropies and Inflation from Non-Standard Spinors, Phys. Lett. B 663 (2008) 168 [arXiv:0710.2003] [SPIRES].

    ADS  Google Scholar 

  13. A.P. Kouretsis, M. Stathakopoulos and P.C. Stavrinos, The General Very Special Relativity in Finsler Cosmology, Phys. Rev. D 79 (2009) 104011 [arXiv:0810.3267] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. S.I. Vacaru, Principles of Einstein-Finsler Gravity and Perspectives in Modern Cosmology, arXiv:1004.3007 [SPIRES].

  15. A.J. Hariton and R. Lehnert, Spacetime symmetries of the Lorentz-violating Maxwell-Chern-Simons model, Phys. Lett. A 367 (2007) 11 [hep-th/0612167] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. W. Muck, Very Special Relativity in Curved Space-Times, Phys. Lett. B 670 (2008) 95 [arXiv:0806.0737] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. S. Das, S. Ghosh and S. Mignemi, Noncommutative Spacetime in Very Special Relativity, arXiv:1004.5356 [SPIRES].

  18. R. da Rocha and J.M. Hoff da Silva, ELKO, flagpole and flag-dipole spinor fields and the instanton Hopf fibration, Adv. A ppl. Clifford Algebras 20 (2010) 847 [arXiv:0811.2717] [SPIRES].

    Article  Google Scholar 

  19. C.G. Boehmer, The Einstein-Cartan-Elko system, Annalen Phys. 16 (2007) 38 [gr-qc/0607088] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  20. E. Alvarez and R. Vidal, Very Special (de Sitter) Relativity, Phys. Rev. D 77 (2008) 127702 [arXiv:0803.1949] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. A.G. Cohen and D.Z. Freedman, Sim(2) and SUSY , JHEP 07 (2007) 039 [hep-th/0605172] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. M.M. Sheikh-Jabbari and A. Tureanu, Realization of Cohen-Glashow Very Special Relativity on Noncommutative Space-Time, Phys. Rev. Lett. 101 (2008) 261601 [arXiv:0806.3699] [SPIRES].

    Article  ADS  Google Scholar 

  23. X. Li, Z. Chang and X. Mo, Isometric group of (α, β)-type Finsler space and the symmetry of Very Special Relativity, arXiv:1001.2667 [SPIRES].

  24. L. Fabbri, Causality for ELKOs, Mod. Phys. Lett. A 25 (2010) 2483 [arXiv:0911.5304] [SPIRES].

    ADS  Google Scholar 

  25. S. Cheon, C. Lee and S.J . Lee, SIM(2)-invariant Modifications of Electrodynamic Theory, Phys. Lett. B 679 (2009) 73 [arXiv:0904.2065] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. M.M. Sheikh-Jabbari and A. Tureanu, An Arena for Model Building in the Cohen-Glashow Very Special Relativity, Phys. Atom. Nucl. 73 (2010) 230 [arXiv:0811.3670] [SPIRES].

    Article  ADS  Google Scholar 

  27. A.G. Cohen and S.L. Glashow, A Lorentz-violating origin of neutrino mass?, hep-ph/0605036 [SPIRES].

  28. S. Das and S. Mohanty, VSR is incompatible with Thomas precession, arXiv:0902.4549 [SPIRES].

  29. A.E. Bernardini and R. da Rocha, Obtaining the equation of motion for a Dirac particle in a generalized Lorentz-violating system framework, Europhys. Lett. 81 (2008) 40010 [hep-th/0701092] [SPIRES].

    Article  ADS  Google Scholar 

  30. S. Liberati, F. Girelli and L. Sindoni, Analogue Models for Emergent Gravity, arXiv:0909.3834 [SPIRES].

  31. A.E. Bernardini and O. Bertolami, Lorentz violating extension of the Standard Model and the Beta-decay end-point, Phys. Rev. D 77 (2008) 085032 [arXiv:0802.2199] [SPIRES].

    ADS  Google Scholar 

  32. D. Gredat and S. Shankaranarayanan, Consistency relation between the scalar and tensor spectra in spinflation, JCAP 01 (2010) 008 [arXiv:0807.3336] [SPIRES].

    ADS  Google Scholar 

  33. R. da Rocha and J.M. Hoff da Silva, From Dirac spinor fields to ELKO, J. Math. Phys. 48 (2007) 123517 [arXiv:0711.1103] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. V.V. Dvoeglazov, Neutral particles in light of the Majorana-Ahluwalia ideas, Int. J. Theor. Phys. 34 (1995) 2467 [hep-th/9504158] [SPIRES].

    Article  MATH  Google Scholar 

  35. D.V. Ahluwalia, C.-Y. Lee and D. Schritt, Self-interacting Elko dark matter with an axis of locality, arXiv:0911.2947 [SPIRES].

  36. E. Majorana, Theory of the Symmetry of Electrons and Positrons, Nuovo Cim. 14 (1937) 171 [SPIRES].

    Article  MATH  Google Scholar 

  37. S. Weinberg, The quantum theory of fields. Vol. 3: Supersymmetry, Cambridge University Press, Cambridge U.K. (2000).

    MATH  Google Scholar 

  38. D.V. Ahluwalia, Quantum measurements, gravitation and locality, Phys. Lett. B 339 (1994) 301 [gr-qc/9308007] [SPIRES].

    ADS  Google Scholar 

  39. S. Doplicher, K. Fredenhagen and J.E. Roberts, Space-time quantization induced by classical gravity, Phys. Lett. B 331 (1994) 39 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  40. V.G. Drinfel’d, Hamiltonian structures of lie groups, lie bialgebras and the geometric meaning of the classical Yang-Baxter equations, Sov. Math. Dokl. 27 (1983) 68 [SPIRES].

    MATH  MathSciNet  Google Scholar 

  41. A. Tureanu, Twisted Poincaré symmetry and some implications on noncommutative quantum field theory, Prog. Theor. Phys. Suppl. 171 (2007) 34 [SPIRES].

    Article  ADS  Google Scholar 

  42. M. Chaichian, P.P. Kulish, A. Tureanu, R.B. Zhang and X. Zhang, Noncommutative fields and actions of twisted Poincaré algebra, J. Math. Phys. 49 (2008) 042302 [arXiv:0711.0371] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. M. Chaichian, K. Nishijima, T. Salminen and A. Tureanu, Noncommutative Quantum Field Theory: A Confrontation of Symmetries, JHEP 06 (2008) 078 [arXiv:0805.3500] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. D.N. Spergel and P.J. Steinhardt, Observational evidence for self-interacting cold dark matter, Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386] [SPIRES].

    Article  ADS  Google Scholar 

  45. D.R. Law, S.R. Majewski and K.V. Johnston, Evidence for a Triaxial Milky Way Dark Matter Halo from the Sagittarius Stellar Tidal Stream, Astrophys. J. 703 (2009) L67 [arXiv:0908.3187] [SPIRES].

    Article  ADS  Google Scholar 

  46. The MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Event Excess in the MiniBooNE Search for \( {\overline \nu_\mu } \to {\overline \nu_e} \) Oscillations, Phys. Rev. Lett. 105 (2010) 181801 [arXiv:1007.1150] [SPIRES].

    Article  ADS  Google Scholar 

  47. T.M. Nieuwenhuizen, Do non-relativistic neutrinos constitute the dark matter?, Europhys. Lett. 86 (2009) 59001 [arXiv:0812.4552] [SPIRES].

    Article  ADS  Google Scholar 

  48. C. Giunti and M. Laveder, Statistical Significance of the Gallium Anomaly, arXiv:1006.3244 [SPIRES].

  49. G.W. Gibbons, J. Gomis and C.N. Pope, General Very Special Relativity is Finsler Geometry, Phys. Rev. D 76 (2007) 081701 [arXiv:0707.2174] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. M. Chaichian, M. Oksanen, A. Tureanu and G. Zet, Gauging the twisted Poincaré symmetry as noncommutative theory of gravitation, Phys. Rev. D 79 (2009) 044016 [arXiv:0807.0733] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  51. G.Y. Bogoslovsky and H.F. Goenner, On a possibility of phase transitions in the geometric structure of space-time, Phys. Lett. A 244 (1998) 222 [gr-qc/9804082] [SPIRES].

    ADS  Google Scholar 

  52. M. Calcada and J.G. Pereira, Gravitation and the Local Symmetry Group of Spacetime, Int. J. Theor. Phys. 41 (2002) 729 [gr-qc/0201059] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  53. H.R. Brown, Physical relativity: Space-time structure from a dynamical perspective, Clarendon Press, Oxford U.K. (2005).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.V. Ahluwalia.

Additional information

ArXiv ePrint:1008.0436

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahluwalia, D., Horvath, S. Very special relativity as relativity of dark matter: the Elko connection. J. High Energ. Phys. 2010, 78 (2010). https://doi.org/10.1007/JHEP11(2010)078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)078

Keywords

Navigation