Skip to main content
Log in

Quark confinement via magnetic color-flavor locking

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The color-flavor locking phenomenon in the magnetic picture can be the microscopic description of the quark confinement in QCD. We demonstrate it in an \( \mathcal{N} \) = 2 supersymmetric SU(N c )1 × SU(N c )2 quiver gauge theory coupled to N f flavors of quarks (N f < N c ). This model reduces to SU(N c )1+2 gauge theory with N f flavors when the vacuum expectations value of the link field is much larger than the dynamical scales, and thus provides a continuous deformation of the \( \mathcal{N} \) = 2 supersymmetric QCD. We study a vacuum which survives upon adding a superpotential term to reduce to \( \mathcal{N} \) = 1 while preserving the vectorial SU(N f ) flavor symmetry. We find a region of the parameter space where the confinement is described by the Higgsing of a weakly coupled magnetic SU(N f ) × U(1) gauge theory. The Higgsing locks the quantum numbers of SU(N f ) magnetic color to those of SU(N f ) flavor symmetry, and thus the massive magnetic gauge bosons become the singlet and adjoint representations of the flavor group, i.e, the vector mesons. If the qualitative picture remains valid in non-supersymmetric QCD, one can understand the Hidden Local Symmetry as the magnetic dual description of QCD, and the confining string is identified as the vortex of vector meson fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. JETP 5 (1957) 1174 [Zh. Eksp. Teor. Fiz. 32 (1957) 1442] [INSPIRE].

  2. H.B. Nielsen and P. Olesen, Vortex line models for dual strings, Nucl. Phys. B 61 (1973) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  3. Y. Nambu, Strings, monopoles and gauge fields, Phys. Rev. D 10 (1974) 4262 [INSPIRE].

    ADS  Google Scholar 

  4. G. ’t Hooft, Gauge fields with unified weak, electromagnetic, and strong interactions, talk given at the E.P.S. Int. Conf. on High Energy Physics, June 23-28, Palermo, ITaly (1975).

  5. S. Mandelstam, Vortices and quark confinement in nonabelian gauge theories, Phys. Lett. B 53 (1975) 476 [INSPIRE].

    Article  ADS  Google Scholar 

  6. P. Goddard, J. Nuyts and D.I. Olive, Gauge theories and magnetic charge, Nucl. Phys. B 125 (1977) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. C. Montonen and D.I. Olive, Magnetic monopoles as gauge particles?, Phys. Lett. B 72 (1977) 117 [INSPIRE].

    Article  ADS  Google Scholar 

  8. H. Osborn, Topological charges for N = 4 supersymmetric gauge theories and monopoles of spin 1, Phys. Lett. B 83 (1979) 321 [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Sen, Dyon-monopole bound states, selfdual harmonic forms on the multi-monopole moduli space and SL(2, ℤ) invariance in string theory, Phys. Lett. B 329 (1994) 217 [hep-th/9402032] [INSPIRE].

    Article  ADS  Google Scholar 

  10. C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].

  12. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. D.I. Olive, Exact electromagnetic duality, Nucl. Phys. Proc. Suppl. 45A (1996) 88 [Nucl. Phys. Proc. Suppl. 46 (1996) 1] [hep-th/9508089] [INSPIRE].

  15. S. Elitzur, A. Giveon and D. Kutasov, Branes and N = 1 duality in string theory, Phys. Lett. B 400 (1997) 269 [hep-th/9702014] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Giveon and D. Kutasov, Brane dynamics and gauge theory, Rev. Mod. Phys. 71 (1999) 983 [hep-th/9802067] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. M. Unsal, Magnetic bion condensation: a new mechanism of confinement and mass gap in four dimensions, Phys. Rev. D 80 (2009) 065001 [arXiv:0709.3269] [INSPIRE].

    ADS  Google Scholar 

  19. O. Aharony, J. Sonnenschein, M.E. Peskin and S. Yankielowicz, Exotic nonsupersymmetric gauge dynamics from supersymmetric QCD, Phys. Rev. D 52 (1995) 6157 [hep-th/9507013] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. N. Arkani-Hamed and R. Rattazzi, Exact results for nonholomorphic masses in softly broken supersymmetric gauge theories, Phys. Lett. B 454 (1999) 290 [hep-th/9804068] [INSPIRE].

    Article  ADS  Google Scholar 

  21. C. Vafa and E. Witten, Restrictions on symmetry breaking in vector-like gauge theories, Nucl. Phys. B 234 (1984) 173 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Shifman and A. Yung, Confinement in N = 1 SQCD: one step beyond Seibergs duality, Phys. Rev. D 76 (2007) 045005 [arXiv:0705.3811] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. M. Shifman and A. Yung, Non-abelian duality and confinement in N = 2 supersymmetric QCD, Phys. Rev. D 79 (2009) 125012 [arXiv:0904.1035] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. M. Shifman and A. Yung, Non-abelian duality and confinement: from N = 2 to N = 1 supersymmetric QCD, Phys. Rev. D 83 (2011) 105021 [arXiv:1103.3471] [INSPIRE].

    ADS  Google Scholar 

  25. A. Hanany and D. Tong, Vortices, instantons and branes, JHEP 07 (2003) 037 [hep-th/0306150] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, Non-abelian superconductors: vortices and confinement in N = 2 SQCD, Nucl. Phys. B 673 (2003) 187 [hep-th/0307287] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. R. Auzzi, S. Bolognesi, J. Evslin and K. Konishi, Non-abelian monopoles and the vortices that confine them, Nucl. Phys. B 686 (2004) 119 [hep-th/0312233] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. M. Shifman and A. Yung, Non-abelian string junctions as confined monopoles, Phys. Rev. D 70 (2004) 045004 [hep-th/0403149] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. A. Hanany and D. Tong, Vortex strings and four-dimensional gauge dynamics, JHEP 04 (2004) 066 [hep-th/0403158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. M. Eto et al., Non-abelian duality from vortex moduli: a dual model of color-confinement, Nucl. Phys. B 780 (2007) 161 [hep-th/0611313] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. R. Kitano, Hidden local symmetry and color confinement, JHEP 11 (2011) 124 [arXiv:1109.6158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Is ρ meson a dynamical gauge boson of hidden local symmetry?, Phys. Rev. Lett. 54 (1985) 1215 [INSPIRE].

    Article  ADS  Google Scholar 

  33. Z. Komargodski, Vector mesons and an interpretation of Seiberg duality, JHEP 02 (2011) 019 [arXiv:1010.4105] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. S. Abel and J. Barnard, Seiberg duality versus hidden local symmetry, JHEP 05 (2012) 044 [arXiv:1202.2863] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. R. Kitano, M. Nakamura and N. Yokoi, Making confining strings out of mesons, Phys. Rev. D 86 (2012) 014510 [arXiv:1202.3260] [INSPIRE].

    ADS  Google Scholar 

  36. N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. C.T. Hill, S. Pokorski and J. Wang, Gauge invariant effective lagrangian for Kaluza-Klein modes, Phys. Rev. D 64 (2001) 105005 [hep-th/0104035] [INSPIRE].

    ADS  Google Scholar 

  38. H.-C. Cheng, C.T. Hill, S. Pokorski and J. Wang, The standard model in the latticized bulk, Phys. Rev. D 64 (2001) 065007 [hep-th/0104179] [INSPIRE].

    ADS  Google Scholar 

  39. A. Hanany, M.J. Strassler and A. Zaffaroni, Confinement and strings in MQCD, Nucl. Phys. B 513 (1998) 87 [hep-th/9707244] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. A.I. Vainshtein and A. Yung, Type I superconductivity upon monopole condensation in Seiberg-Witten theory, Nucl. Phys. B 614 (2001) 3 [hep-th/0012250] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. A. Hanany and Y. Oz, On the quantum moduli space of vacua of N = 2 supersymmetric SU(N c ) gauge theories, Nucl. Phys. B 452 (1995) 283 [hep-th/9505075] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. P.C. Argyres, M.R. Plesser and A.D. Shapere, The Coulomb phase of N = 2 supersymmetric QCD, Phys. Rev. Lett. 75 (1995) 1699 [hep-th/9505100] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. A. Giveon and O. Pelc, M theory, type IIA string and 4 − D N = 1 SUSY SU(N L ) × SU(N R ) gauge theory, Nucl. Phys. B 512 (1998) 103 [hep-th/9708168] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. J. Erlich, A. Naqvi and L. Randall, The Coulomb branch of N = 2 supersymmetric product group theories from branes, Phys. Rev. D 58 (1998) 046002 [hep-th/9801108] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  45. P.C. Argyres, M.R. Plesser and N. Seiberg, The moduli space of vacua of N = 2 SUSY QCD and duality in N = 1 SUSY QCD, Nucl. Phys. B 471 (1996) 159 [hep-th/9603042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. G. Carlino, K. Konishi and H. Murayama, Dynamics of supersymmetric SU(N c ) and USp(2N c ) gauge theories, JHEP 02 (2000) 004 [hep-th/0001036] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. G. Carlino, K. Konishi and H. Murayama, Dynamical symmetry breaking in supersymmetric SU(N c ) and USp(2N c ) gauge theories, Nucl. Phys. B 590 (2000) 37 [hep-th/0005076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. G.S. Bali, QCD forces and heavy quark bound states, Phys. Rept. 343 (2001) 1 [hep-ph/0001312] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  49. N. Arkani-Hamed, A.G. Cohen, D.B. Kaplan, A. Karch and L. Motl, Deconstructing (2, 0) and little string theories, JHEP 01 (2003) 083 [hep-th/0110146] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. C. Csáki, J. Erlich and J. Terning, Seiberg-Witten description of the deconstructed 6D (0, 2) theory, Phys. Rev. D 67 (2003) 025019 [hep-th/0208095] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Yokoi.

Additional information

ArXiv ePrint: 1308.0093

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitano, R., Yokoi, N. Quark confinement via magnetic color-flavor locking. J. High Energ. Phys. 2013, 129 (2013). https://doi.org/10.1007/JHEP11(2013)129

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)129

Keywords

Navigation