Skip to main content
Log in

More on the Nambu-Poisson M5-brane theory: scaling limit, background independence and an all order solution to the Seiberg-Witten map

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We continue our investigation on the Nambu-Poisson description of M5-brane in a large constant C-field background (NP M5-brane theory) constructed in refs. [1, 2]. In this paper, the low energy limit where the NP M5-brane theory is applicable is clarified. The background independence of the NP M5-brane theory is made manifest using the variables in the BLG model of multiple M2-branes. An all order solution to the Seiberg-Witten map is also constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.-M. Ho and Y. Matsuo, M5 from M2, JHEP 06 (2008) 105 [arXiv:0804.3629] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. P.-M. Ho, Y. Imamura, Y. Matsuo and S. Shiba, M5-brane in three-form flux and multiple M2-branes, JHEP 08 (2008) 014 [arXiv:0805.2898] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. R. Güven, Black p-brane solutions of D = 11 supergravity theory, Phys. Lett. B 276 (1992) 49 [SPIRES].

    ADS  Google Scholar 

  4. E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. P.S. Howe and E. Sezgin, D = 11, p = 5, Phys. Lett. B 394 (1997) 62 [hep-th/9611008] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. P.S. Howe, E. Sezgin and P.C. West, Covariant field equations of the M-theory five-brane, Phys. Lett. B 399 (1997) 49 [hep-th/9702008] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. P. Pasti, D.P. Sorokin and M. Tonin, Covariant action for a D = 11 five-brane with the chiral field, Phys. Lett. B 398 (1997) 41 [hep-th/9701037] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. I.A. Bandos et al., Covariant action for the super-five-brane of M-theory, Phys. Rev. Lett. 78 (1997) 4332 [hep-th/9701149] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. M. Aganagic, J. Park, C. Popescu and J.H. Schwarz, World-volume action of the M-theory five-brane, Nucl. Phys. B 496 (1997) 191 [hep-th/9701166] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. I.A. Bandos et al., On the equivalence of different formulations of the M-theory five-brane, Phys. Lett. B 408 (1997) 135 [hep-th/9703127] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. E. Witten, Five-brane effective action in M-theory, J. Geom. Phys. 22 (1997) 103 [hep-th/9610234] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. D. Belov and G.W. Moore, Holographic action for the self-dual field, hep-th/0605038 [SPIRES].

  14. J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. J. Bagger and N. Lambert, Gauge Symmetry and Supersymmetry of Multiple M2-Branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. K. Furuuchi, S.-Y.D. Shih and T. Takimi, M-Theory Superalgebra From Multiple Membranes, JHEP 08 (2008) 072 [arXiv:0806.4044] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. K. Furuuchi and T. Takimi, String solitons in the M5-brane worldvolume action with Nambu-Poisson structure and Seiberg-Witten map, JHEP 08 (2009) 050 [arXiv:0906.3172] [SPIRES].

    MathSciNet  Google Scholar 

  21. P.S. Howe, N.D. Lambert and P.C. West, The self-dual string soliton, Nucl. Phys. B 515 (1998) 203 [hep-th/9709014] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. Y. Michishita, The M2-brane soliton on the M5-brane with constant 3-form, JHEP 09 (2000) 036 [hep-th/0008247] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. D. Youm, BPS solitons in M5-brane worldvolume theory with constant three-form field, Phys. Rev. D 63 (2001) 045004 [hep-th/0009082] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. K. Furuuchi, Non-Linearly Extended Self-Dual Relations From The Nambu-Bracket Description Of M5-Brane In A Constant C-Field Background, JHEP 03 (2010) 127 [arXiv:1001.2300] [SPIRES].

    Article  ADS  Google Scholar 

  25. P.S. Howe, E. Sezgin and P.C. West, The six-dimensional self-dual tensor, Phys. Lett. B 400 (1997) 255 [hep-th/9702111] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. J.H. Schwarz, Coupling a self-dual tensor to gravity in six dimensions, Phys. Lett. B 395 (1997) 191 [hep-th/9701008] [SPIRES].

    ADS  Google Scholar 

  27. P. Pasti, I. Samsonov, D. Sorokin and M. Tonin, BLG-motivated Lagrangian formulation for the chiral two-form gauge fieldin D =6 and M5-branes, Phys. Rev. D 80 (2009) 086008 [arXiv:0907.4596] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. V.T. Filippov, n-Lie algebras, Sib. Mat. Zh. 26 (1985) 126140.

    Google Scholar 

  29. S. Kawamoto and N. Sasakura, Open membranes in a constant C-field background and noncommutative boundary strings, JHEP 07 (2000) 014 [hep-th/0005123] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. P.-M. Ho and Y. Matsuo, A toy model of open membrane field theory in constant 3-form flux, Gen. Rel. Grav. 39 (2007) 913 [hep-th/0701130] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. C. Hofman and J.-S. Park, Topological open membranes, hep-th/0209148 [SPIRES].

  32. C. Hofman and J.-S. Park, BV quantization of topological open membranes, Commun. Math. Phys. 249 (2004) 249 [hep-th/0209214] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. D.S. Berman and B. Pioline, Open membranes, ribbons and deformed Schild strings, Phys. Rev. D 70 (2004) 045007 [hep-th/0404049] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  34. C.-S. Chu and D.J. Smith, Towards the Quantum Geometry of the M5-brane in a Constant C-Field from Multiple Membranes, JHEP 04 (2009) 097 [arXiv:0901.1847] [SPIRES].

    Article  ADS  Google Scholar 

  35. J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge Univ. Press, Cambridge U.K. (1998).

    Google Scholar 

  36. C.-S. Chu and P.-M. Ho, Noncommutative open string and D-brane, Nucl. Phys. B 550 (1999) 151 [hep-th/9812219] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. C.-S. Chu and P.-M. Ho, Constrained quantization of open string in background B field and noncommutative D-brane, Nucl. Phys. B 568 (2000) 447 [hep-th/9906192] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. V. Schomerus, D-branes and deformation quantization, JHEP 06 (1999) 030 [hep-th/9903205] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. N. Nekrasov and A.S. Schwarz, Instantons on noncommutative R 4 and (2,0) superconformal six dimensional theory, Commun. Math. Phys. 198 (1998) 689 [hep-th/9802068] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. K. Furuuchi, Instantons on noncommutative R 4 and projection operators, Prog. Theor. Phys. 103 (2000) 1043 [hep-th/9912047] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. K. Furuuchi, Equivalence of projections as gauge equivalence on noncommutative space, Commun. Math. Phys. 217 (2001) 579 [hep-th/0005199] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. P.-M. Ho, Twisted bundle on noncommutative space and U(1) instanton, hep-th/0003012 [SPIRES].

  43. R. Gopakumar, S. Minwalla and A. Strominger, Noncommutative solitons, JHEP 05 (2000) 020 [hep-th/0003160] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP 02 (2000) 020 [hep-th/9912072] [SPIRES].

    Article  ADS  Google Scholar 

  45. C.-H. Chen, P.-M. Ho and T. Takimi, A No-Go Theorem for M5-brane Theory, JHEP 03 (2010) 104 [arXiv:1001.3244] [SPIRES].

    ADS  Google Scholar 

  46. R. Gopakumar, S. Minwalla, N. Seiberg and A. Strominger, OM Theory in Diverse Dimensions, JHEP 08 (2000) 008 [hep-th/0006062] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. N. Seiberg, A note on background independence in noncommutative gauge theories, matrix model and tachyon condensation, JHEP 09 (2000) 003 [hep-th/0008013] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. E. Bergshoeff, D.S. Berman, J.P. van der Schaar and P. Sundell, A noncommutative M-theory five-brane, Nucl. Phys. B 590 (2000) 173 [hep-th/0005026] [SPIRES].

    Article  ADS  Google Scholar 

  49. E. Bergshoeff, D.S. Berman, J.P. van der Schaar and P. Sundell, Critical fields on the M5-brane and noncommutative open strings, Phys. Lett. B 492 (2000) 193 [hep-th/0006112] [SPIRES].

    ADS  Google Scholar 

  50. G.W. Gibbons and P.C. West, The metric and strong coupling limit of the M5-brane, J. Math. Phys. 42 (2001) 3188 [hep-th/0011149] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  51. J.P. Van der Schaar, The reduced open membrane metric, JHEP 08 (2001) 048 [hep-th/0106046] [SPIRES].

    Article  Google Scholar 

  52. D.S. Berman et al., Deformation independent open brane metrics and generalized theta parameters, JHEP 02 (2002) 012 [hep-th/0109107] [SPIRES].

    Article  ADS  Google Scholar 

  53. E. Bergshoeff and J.P. Van der Schaar, Reduction of open membrane moduli, JHEP 02 (2002) 019 [hep-th/0111061] [SPIRES].

    Article  ADS  Google Scholar 

  54. H. Aoki et al., Noncommutative Yang-Mills in IIB matrix model, Nucl. Phys. B 565 (2000) 176 [hep-th/9908141] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. P.-M. Ho, Y. Matsuo and S. Shiba, Lorentzian Lie (3-)algebra and toroidal compactification of M/string theory, JHEP 03 (2009) 045 [arXiv:0901.2003] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. B. Sakita, W (infinity) gauge transformations and the electromagnetic interactions of electrons in the lowest Landau level, Phys. Lett. B 315 (1993) 124 [hep-th/9307087] [SPIRES].

    ADS  Google Scholar 

  57. N. Ishibashi, A relation between commutative and noncommutative descriptions of D-branes, hep-th/9909176 [SPIRES].

  58. L. Cornalba and R. Schiappa, Matrix theory star products from the Born-Infeld action, Adv. Theor. Math. Phys. 4 (2000) 249 [hep-th/9907211] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  59. L. Cornalba, D-brane physics and noncommutative Yang-Mills theory, Adv. Theor. Math. Phys. 4 (2000) 271 [hep-th/9909081] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  60. K. Okuyama, A path integral representation of the map between commutative and noncommutative gauge fields, JHEP 03 (2000) 016 [hep-th/9910138] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  61. B. Jurčo and P. Schupp, Noncommutative Yang-Mills from equivalence of star products, Eur. Phys. J. C 14 (2000) 367 [hep-th/0001032] [SPIRES].

    ADS  Google Scholar 

  62. B. Jurčo, P. Schupp and J. Wess, Noncommutative gauge theory for Poisson manifolds, Nucl. Phys. B 584 (2000) 784 [hep-th/0005005] [SPIRES].

    ADS  Google Scholar 

  63. L. Takhtajan, On Foundations of the Generalized Nambu Mechanics, Comm. Math. Phys. 160 (1994) 295 [hep-th/9301111] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  64. I. Vaisman, A Survey on Nambu-Poisson Brackets, math/9901047.

  65. T. Asakawa and I. Kishimoto, Comments on gauge equivalence in noncommutative geometry, JHEP 11 (1999) 024 [hep-th/9909139] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  66. Y. Okawa and S. Terashima, Constraints on effective Lagrangian of D-branes from non-commutative gauge theory, Nucl. Phys. B 584 (2000) 329 [hep-th/0002194] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  67. W.-M. Chen and P.-M. Ho, Lagrangian Formulations of Self-dual Gauge Theories in Diverse Dimensions, Nucl. Phys. B 837 (2010) 1 [arXiv:1001.3608] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohisa Takimi.

Additional information

ArXiv ePrint: 1006.5291

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CH., Furuuchi, K., Ho, PM. et al. More on the Nambu-Poisson M5-brane theory: scaling limit, background independence and an all order solution to the Seiberg-Witten map. J. High Energ. Phys. 2010, 100 (2010). https://doi.org/10.1007/JHEP10(2010)100

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2010)100

Keywords

Navigation