Skip to main content
Log in

Lepton mixing parameters from discrete and CP symmetries

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider a scenario with three Majorana neutrinos in which a discrete, finite flavour group G f is combined with a generalized CP transformation. We derive conditions for consistently defining such a setup. We show that in general lepton mixing angles and CP phases (Dirac as well as Majorana) only depend on one single parameter θ which can take values between 0 and π, if the residual symmetries are G eG f in the charged lepton and G ν = Z 2 × CP in the neutrino sector. We perform a comprehensive study for G f = S 4 and find five cases which are phenomenologically interesting. They naturally lead to a non-zero reactor mixing angle and all mixing parameters are strongly correlated. Some of the patterns predict maximal atmospheric mixing and maximal Dirac phase, while others predict trivial Dirac and Majorana phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].

    Article  ADS  Google Scholar 

  2. H. Ishimori et al., Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  3. P. Harrison, D. Perkins and W. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].

    ADS  Google Scholar 

  4. Z.-z. Xing, Nearly tri bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [INSPIRE].

    ADS  Google Scholar 

  5. G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A 4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. I. de Medeiros Varzielas, S. King and G. Ross, Tri-bimaximal neutrino mixing from discrete subgroups of SU(3) and SO(3) family symmetry, Phys. Lett. B 644 (2007) 153 [hep-ph/0512313] [INSPIRE].

    ADS  Google Scholar 

  7. X.-G. He, Y.-Y. Keum and R.R. Volkas, A 4 flavor symmetry breaking scheme for understanding quark and neutrino mixing angles, JHEP 04 (2006) 039 [hep-ph/0601001] [INSPIRE].

    Article  ADS  Google Scholar 

  8. E. Ma, A 4 symmetry and neutrinos with very different masses, Phys. Rev. D 70 (2004) 031901 [hep-ph/0404199] [INSPIRE].

    ADS  Google Scholar 

  9. C. Lam, Symmetry of Lepton Mixing, Phys. Lett. B 656 (2007) 193 [arXiv:0708.3665] [INSPIRE].

    ADS  Google Scholar 

  10. C. Lam, Determining Horizontal Symmetry from Neutrino Mixing, Phys. Rev. Lett. 101 (2008) 121602 [arXiv:0804.2622] [INSPIRE].

    Article  ADS  Google Scholar 

  11. C. Lam, The Unique Horizontal Symmetry of Leptons, Phys. Rev. D 78 (2008) 073015 [arXiv:0809.1185] [INSPIRE].

    ADS  Google Scholar 

  12. E. Ma, Neutrino mass matrix from S 4 symmetry, Phys. Lett. B 632 (2006) 352 [hep-ph/0508231] [INSPIRE].

    ADS  Google Scholar 

  13. T2K collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].

    Article  ADS  Google Scholar 

  14. MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].

    Article  ADS  Google Scholar 

  15. DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].

    Article  ADS  Google Scholar 

  16. DAYA BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

    Article  ADS  Google Scholar 

  17. RENO collaboration, J. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

    Article  ADS  Google Scholar 

  18. Daya Bay collaboration, F. An et al., Improved Measurement of Electron Antineutrino Disappearance at Daya Bay, Chin. Phys. C 37 (2013) 011001 [arXiv:1210.6327] [INSPIRE].

    Google Scholar 

  19. M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].

    Article  ADS  Google Scholar 

  20. R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Discrete Flavour Symmetries in Light of T2K, Phys. Lett. B 703 (2011) 447 [arXiv:1107.3486] [INSPIRE].

    ADS  Google Scholar 

  21. R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite Modular Groups and Lepton Mixing, Nucl. Phys. B 858 (2012) 437 [arXiv:1112.1340] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S.-F. Ge, D.A. Dicus and W.W. Repko, Z 2 Symmetry Prediction for the Leptonic Dirac CP Phase, Phys. Lett. B 702 (2011) 220 [arXiv:1104.0602] [INSPIRE].

    ADS  Google Scholar 

  23. S.-F. Ge, D.A. Dicus and W.W. Repko, Residual Symmetries for Neutrino Mixing with a Large θ13 and Nearly Maximal δD , Phys. Rev. Lett. 108 (2012) 041801 [arXiv:1108.0964] [INSPIRE].

    Article  ADS  Google Scholar 

  24. D. Hernandez and A.Y. Smirnov, Lepton mixing and discrete symmetries, Phys. Rev. D 86 (2012) 053014 [arXiv:1204.0445] [INSPIRE].

    ADS  Google Scholar 

  25. P. Harrison and W. Scott, Symmetries and generalizations of tri - bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [INSPIRE].

    ADS  Google Scholar 

  26. P. Harrison and W. Scott, μ − τ reflection symmetry in lepton mixing and neutrino oscillations, Phys. Lett. B 547 (2002) 219 [hep-ph/0210197] [INSPIRE].

    ADS  Google Scholar 

  27. P. Harrison and W. Scott, The Simplest neutrino mass matrix, Phys. Lett. B 594 (2004) 324 [hep-ph/0403278] [INSPIRE].

    ADS  Google Scholar 

  28. W. Grimus and L. Lavoura, A Nonstandard CP transformation leading to maximal atmospheric neutrino mixing, Phys. Lett. B 579 (2004) 113 [hep-ph/0305309] [INSPIRE].

    ADS  Google Scholar 

  29. Y. Farzan and A.Y. Smirnov, Leptonic CP-violation: Zero, maximal or between the two extremes, JHEP 01 (2007) 059 [hep-ph/0610337] [INSPIRE].

    Article  ADS  Google Scholar 

  30. R. Krishnan, P. Harrison and W. Scott, Simplest Neutrino Mixing from S 4 Symmetry, JHEP 04 (2013) 087 [arXiv:1211.2000] [INSPIRE].

    Article  ADS  Google Scholar 

  31. R. Mohapatra and C. Nishi, S 4 Flavored CP Symmetry for Neutrinos, Phys. Rev. D 86 (2012) 073007 [arXiv:1208.2875] [INSPIRE].

    ADS  Google Scholar 

  32. G. Branco, J. Gerard and W. Grimus, Geometrical T violation, Phys. Lett. B 136 (1984) 383 [INSPIRE].

    ADS  Google Scholar 

  33. I. de Medeiros Varzielas and D. Emmanuel-Costa, Geometrical CP-violation, Phys. Rev. D 84 (2011) 117901 [arXiv:1106.5477] [INSPIRE].

    ADS  Google Scholar 

  34. I. de Medeiros Varzielas, D. Emmanuel-Costa and P. Leser, Geometrical CP-violation from Non-Renormalisable Scalar Potentials, Phys. Lett. B 716 (2012) 193 [arXiv:1204.3633] [INSPIRE].

    ADS  Google Scholar 

  35. I. de Medeiros Varzielas, Geometrical CP-violation in multi-Higgs models, JHEP 08 (2012) 055 [arXiv:1205.3780] [INSPIRE].

    Article  Google Scholar 

  36. G. Bhattacharyya, I. de Medeiros Varzielas and P. Leser, A common origin of fermion mixing and geometrical CP-violation and its test through Higgs physics at the LHC, Phys. Rev. Lett. 109 (2012) 241603 [arXiv:1210.0545] [INSPIRE].

    Article  ADS  Google Scholar 

  37. K.S. Babu and J. Kubo, Dihedral families of quarks, leptons and Higgses, Phys. Rev. D 71 (2005) 056006 [hep-ph/0411226] [INSPIRE].

    ADS  Google Scholar 

  38. K. Babu, K. Kawashima and J. Kubo, Variations on the Supersymmetric Q 6 Model of Flavor, Phys. Rev. D 83 (2011) 095008 [arXiv:1103.1664] [INSPIRE].

    ADS  Google Scholar 

  39. M.-C. Chen and K. Mahanthappa, Group Theoretical Origin of CP-violation, Phys. Lett. B 681 (2009) 444 [arXiv:0904.1721] [INSPIRE].

    ADS  Google Scholar 

  40. A. Meroni, S. Petcov and M. Spinrath, A SUSY SU (5) × T Unified Model of Flavour with large θ13, Phys. Rev. D 86 (2012) 113003 [arXiv:1205.5241] [INSPIRE].

    ADS  Google Scholar 

  41. G. Ecker, W. Grimus and H. Neufeld, A standard form for generalized CP transformations, J. Phys. A 20 (1987) L807 [INSPIRE].

    ADS  Google Scholar 

  42. H. Neufeld, W. Grimus and G. Ecker, Generalized CP invariance, neutral flavor conservation and the structure of the mixing matrix, Int. J. Mod. Phys. A 3 (1988) 603 [INSPIRE].

    ADS  Google Scholar 

  43. G. Branco, R.G. Felipe and F. Joaquim, Leptonic CP-violation, Rev. Mod. Phys. 84 (2012) 515 [arXiv:1111.5332] [INSPIRE].

    Article  ADS  Google Scholar 

  44. W. Grimus and M. Rebelo, Automorphisms in gauge theories and the definition of CP and P, Phys. Rept. 281 (1997) 239 [hep-ph/9506272] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. C. Lam, Symmetry of Lepton Mixing, Phys. Lett. B 656 (2007) 193 [arXiv:0708.3665] [INSPIRE].

    ADS  Google Scholar 

  46. A. Blum, C. Hagedorn and M. Lindner, Fermion Masses and Mixings from Dihedral Flavor Symmetries with Preserved Subgroups, Phys. Rev. D 77 (2008) 076004 [arXiv:0709.3450] [INSPIRE].

    ADS  Google Scholar 

  47. C. Hagedorn, S.F. King and C. Luhn, A SUSY GUT of Flavour with S 4 × SU (5) to NLO, JHEP 06 (2010) 048 [arXiv:1003.4249] [INSPIRE].

    Article  ADS  Google Scholar 

  48. C. Lam, Group Theory and Dynamics of Neutrino Mixing, Phys. Rev. D 83 (2011) 113002 [arXiv:1104.0055] [INSPIRE].

    ADS  Google Scholar 

  49. V.D. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, Bimaximal mixing of three neutrinos, Phys. Lett. B 437 (1998) 107 [hep-ph/9806387] [INSPIRE].

    ADS  Google Scholar 

  50. R.N. Mohapatra and S. Nussinov, Bimaximal neutrino mixing and neutrino mass matrix, Phys. Rev. D 60 (1999) 013002 [hep-ph/9809415] [INSPIRE].

    ADS  Google Scholar 

  51. G. Altarelli and F. Feruglio, Models of neutrino masses from oscillations with maximal mixing, JHEP 11 (1998) 021 [hep-ph/9809596] [INSPIRE].

    Article  ADS  Google Scholar 

  52. N. Cabibbo, Time Reversal Violation in Neutrino Oscillation, Phys. Lett. B 72 (1978) 333 [INSPIRE].

    ADS  Google Scholar 

  53. L. Wolfenstein, Oscillations Among Three Neutrino Types and CP-violation, Phys. Rev. D 18 (1978) 958 [INSPIRE].

    ADS  Google Scholar 

  54. P. Ferreira, W. Grimus, L. Lavoura and P. Ludl, Maximal CP-violation in Lepton Mixing from a Model with Δ(27) flavour Symmetry, JHEP 09 (2012) 128 [arXiv:1206.7072] [INSPIRE].

    Article  ADS  Google Scholar 

  55. X.-G. He and A. Zee, Minimal modification to the tri-bimaximal neutrino mixing, Phys. Lett. B 645 (2007) 427 [hep-ph/0607163] [INSPIRE].

    ADS  Google Scholar 

  56. W. Grimus and L. Lavoura, A Model for trimaximal lepton mixing, JHEP 09 (2008) 106 [arXiv:0809.0226] [INSPIRE].

    Article  ADS  Google Scholar 

  57. C.H. Albright and W. Rodejohann, Comparing Trimaximal Mixing and Its Variants with Deviations from Tri-bimaximal Mixing, Eur. Phys. J. C 62 (2009) 599 [arXiv:0812.0436] [INSPIRE].

    Article  ADS  Google Scholar 

  58. Y. Lin, Tri-bimaximal Neutrino Mixing from A 4 and θ13 ∼ θC , Nucl. Phys. B 824 (2010) 95 [arXiv:0905.3534] [INSPIRE].

    Article  ADS  Google Scholar 

  59. W. Grimus, L. Lavoura and A. Singraber, Trimaximal lepton mixing with a trivial Dirac phase, Phys. Lett. B 686 (2010) 141 [arXiv:0911.5120] [INSPIRE].

    ADS  Google Scholar 

  60. C. Lam, Mass Independent Textures and Symmetry, Phys. Rev. D 74 (2006) 113004 [hep-ph/0611017] [INSPIRE].

    ADS  Google Scholar 

  61. X.-G. He and A. Zee, Minimal Modification to Tri-bimaximal Mixing, Phys. Rev. D 84 (2011) 053004 [arXiv:1106.4359] [INSPIRE].

    ADS  Google Scholar 

  62. D. Hernandez, Discrete Symmetries and Lepton Mixing, talk given at BeNe 2012, 18 September 2012, ICTP, Trieste, Italy, webpage: http://users.ictp.it/~smr2366/.

  63. G.A. Miller, H.F. Blichfeldt and L.E. Dickson, Theory and Applications of Finite Groups, John Wiley & Sons, New York (1916), and Dover Edition (1961).

  64. W.M. Fairbairn, T. Fulton and W.H. Klink, Finite and Disconnected Subgroups of SU(3) and Their Application to the Elementary Particle Spectrum, J. Math. Phys. 5 (1964) 1038.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. J. Escobar and C. Luhn, The Flavor Group Δ(6n 2), J. Math. Phys. 50 (2009) 013524 [arXiv:0809.0639] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. GAP, GAP - Groups, Algorithms, and Programming, Version 4.5.5, (2012), http://www.gap-system.org.

  67. H.U. Besche, B. Eick and E. O’Brien, SmallGroups- library of allsmallgroups, GAP package, Version included in GAP 4.5.5, (2002), http://www.gap-system.org/Packages/sgl.html.

  68. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  69. C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].

    Article  ADS  Google Scholar 

  70. E.E. Jenkins and A.V. Manohar, Rephasing Invariants of Quark and Lepton Mixing Matrices, Nucl. Phys. B 792 (2008) 187 [arXiv:0706.4313] [INSPIRE].

    Article  ADS  Google Scholar 

  71. G. Branco, L. Lavoura and M. Rebelo, Majorana neutrinos and CP-violation in the leptonic sector, Phys. Lett. B 180 (1986) 264 [INSPIRE].

    ADS  Google Scholar 

  72. E.E. Jenkins and A.V. Manohar, Algebraic Structure of Lepton and Quark Flavor Invariants and CP-violation, JHEP 10 (2009) 094 [arXiv:0907.4763] [INSPIRE].

    Article  ADS  Google Scholar 

  73. J.F. Nieves and P.B. Pal, Minimal rephasing invariant CP-violating parameters with Dirac and Majorana fermions, Phys. Rev. D 36 (1987) 315 [INSPIRE].

    ADS  Google Scholar 

  74. F. del Aguila and M. Zralek, CP violation in the lepton sector with Majorana neutrinos, Nucl. Phys. B 447 (1995) 211 [hep-ph/9504228] [INSPIRE].

    Article  ADS  Google Scholar 

  75. F. del Aguila, J. Aguilar-Saavedra and M. Zralek, Invariant analysis of CP-violation, Comput. Phys. Commun. 100 (1997) 231 [hep-ph/9607311] [INSPIRE].

    Article  ADS  Google Scholar 

  76. J. Aguilar-Saavedra and G. Branco, Unitarity triangles and geometrical description of CP-violation with Majorana neutrinos, Phys. Rev. D 62 (2000) 096009 [hep-ph/0007025] [INSPIRE].

    ADS  Google Scholar 

  77. J.F. Nieves and P.B. Pal, Rephasing invariant CP-violating parameters with Majorana neutrinos, Phys. Rev. D 64 (2001) 076005 [hep-ph/0105305] [INSPIRE].

    ADS  Google Scholar 

  78. S.M. Bilenky and S. Petcov, Massive Neutrinos and Neutrino Oscillations, Rev. Mod. Phys. 59 (1987) 671 [Erratum ibid. 61 (1989) 169] [INSPIRE].

    Article  ADS  Google Scholar 

  79. L. Wolfenstein, CP Properties of Majorana Neutrinos and Double beta Decay, Phys. Lett. B 107 (1981) 77 [INSPIRE].

    ADS  Google Scholar 

  80. S.M. Bilenky, N. Nedelcheva and S. Petcov, Some implications of the CP invariance for mixing of Majorana neutrinos, Nucl. Phys. B 247 (1984) 61 [INSPIRE].

    Article  ADS  Google Scholar 

  81. B. Kayser, CPT, CP and C Phases and their Effects in Majorana Particle Processes, Phys. Rev. D 30 (1984) 1023 [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Hagedorn.

Additional information

ArXiv ePrint: 1211.5560

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feruglio, F., Hagedorn, C. & Ziegler, R. Lepton mixing parameters from discrete and CP symmetries. J. High Energ. Phys. 2013, 27 (2013). https://doi.org/10.1007/JHEP07(2013)027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)027

Keywords

Navigation