Skip to main content
Log in

Numerical algebraic geometry: a new perspective on gauge and string theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

There is a rich interplay between algebraic geometry and string and gauge theories which has been recently aided immensely by advances in computational algebra. However, symbolic (Gröbner) methods are severely limited by algorithmic issues such as exponential space complexity and being highly sequential. In this paper, we introduce a novel paradigm of numerical algebraic geometry which in a plethora of situations overcomes these shortcomings. The so-called ‘embarrassing parallelizability’ allows us to solve many problems and extract physical information which elude symbolic methods. We describe the method and then use it to solve various problems arising from physics which could not be otherwise solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-H. He et al., Computational Algebraic Geometry in String and Gauge Theory, Adv. High Energy Phys. 2012 (2012) 431898.

    Article  MathSciNet  Google Scholar 

  2. J. Gray, Y.-H. He, V. Jejjala and B.D. Nelson, NSF/Microsoft Cloud Computing Grant CCF-1048082: Computing in the Cloud, a String Cartography, (2010).

  3. J. Gray, Y.-H. He, V. Jejjala and B.D. Nelson, Vacuum geometry and the search for new physics, Phys. Lett. B 638 (2006) 253 [https://doi.org/hep-th/0511062] [https://doi.org/INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. L.B. Anderson, Y.-H. He and A. Lukas, Heterotic Compactification, An Algorithmic Approach, JHEP 07 (2007) 049 [https://doi.org/hep-th/0702210] [https://doi.org/INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Gray, Y.-H. He, A. Ilderton and A. Lukas, A New Method for Finding Vacua in String Phenomenology, JHEP 07 (2007) 023 [https://doi.org/hep-th/0703249] [https://doi.org/INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Gray, A Simple Introduction to Grobner Basis Methods in String Phenomenology, Adv. High Energy Phys. 2011 (2011) 217035 [https://doi.org/arXiv:0901.1662] [https://doi.org/INSPIRE].

    Article  MathSciNet  Google Scholar 

  7. D.A. Cox, J. Little and D. O’Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics), Springer-Verlag, New York U.S.A. (2007).

    Book  Google Scholar 

  8. J.C. Faugère, A new efficient algorithm for computing Gröbner bases (F4), J. Pure Appl. Algebra 139 (1999) 61.

    Article  MathSciNet  Google Scholar 

  9. J.C. Faugère, A new efficient algorithm for computing Gröbner bases without reduction to zero (F5), in ISSAC02: Proceedings of the 2002 international symposium on Symbolic and algebraic computation, New York U.S.A. (2002), pg. 75.

  10. V.P. Gerdt, Involutive Algorithms for Computing Groebner Bases, https://doi.org/math/0501111.

  11. G.-M. Pfister, G. Schönemann, H. Decker and W. Greuel, Singular 3-1-3A computer algebra system for polynomial computations (2011), https://doi.org/http://www.singular.uni-kl.de.

  12. CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra, available at https://doi.org/cocoa.dima.unige.it.

  13. D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at https://doi.org/www.math.uiuc.edu/Macaulay2/.

  14. W. Bosma, J. Cannon and C. Playoust, The magma algebra system i: the user language, J. Symb. Comput. 24 (1997) 235.

    Article  MathSciNet  Google Scholar 

  15. J. Gray, Y.-H. He and A. Lukas, Algorithmic Algebraic Geometry and Flux Vacua, JHEP 09 (2006) 031 [https://doi.org/hep-th/0606122] [https://doi.org/INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Gray, Y.-H. He, A. Ilderton and A. Lukas, STRINGVACUA: A Mathematica Package for Studying Vacuum Configurations in String Phenomenology, Comput. Phys. Commun. 180 (2009) 107 [https://doi.org/arXiv:0801.1508] [https://doi.org/INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. D. Mehta, Lattice vs. Continuum: Landau Gauge Fixing andt Hooft-Polyakov Monopoles, Ph.D. Thesis, University of Adelaide, Adelaide Australia (2009).

    Google Scholar 

  18. D. Mehta, A. Sternbeck, L. von Smekal and A.G Williams, Lattice Landau Gauge and Algebraic Geometry, https://doi.org/PoS(QCD-TNT09)025.

  19. L. von Smekal, D. Mehta, A. Sternbeck and A.G. Williams, Modified Lattice Landau Gauge, https://doi.org/PoS(LATTICE 2007)382.

  20. L. von Smekal, A. Jorkowski, D. Mehta and A. Sternbeck, Lattice Landau gauge via Stereographic Projection, https://doi.org/PoS(CONFINEMENT8)048.

  21. D. Mehta and M. Kastner, Stationary point analysis of the one-dimensional lattice Landau gauge fixing functional, aka random phase XY Hamiltonian, Annals Phys. 326 (2011) 1425 [https://doi.org/arXiv:1010.5335] [https://doi.org/INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. D. Mehta, Finding All the Stationary Points of a Potential Energy Landscape via Numerical Polynomial Homotopy Continuation Method, Phys. Rev. E 84 (2011) 025702 [https://doi.org/arXiv:1104.5497] [https://doi.org/INSPIRE].

    ADS  Google Scholar 

  23. D. Mehta, Numerical Polynomial Homotopy Continuation Method and String Vacua, Adv. High Energy Phys. 2011 (2011) 263937.

    Article  MathSciNet  Google Scholar 

  24. M. Kastner and D. Mehta, Phase Transitions Detached from Stationary Points of the Energy Landscape, Phys. Rev. Lett. 107 (2011) 160602 [https://doi.org/arXiv:1108.2345] [https://doi.org/INSPIRE].

    Article  ADS  Google Scholar 

  25. D. Mehta, M. Kastner and J.D. Hauenstein, Energy landscape analysis of the two-dimensional nearest-neighbor φ4 model, Phys. Rev. E 85 (2012) 061103 [https://doi.org/arXiv:1202.3320].

    ADS  Google Scholar 

  26. M. Maniatis and D. Mehta, Minimizing Higgs Potentials via Numerical Polynomial Homotopy Continuation, (2012).

  27. L. Casetti, R. Nerattini, M. Kastner and D. Mehta, Stationary Points Analysis of the 2D and 3D XY Model, to appear.

  28. D. Hughes, C. Mehta and J.I. Skullerud, Enumerating Gribov Copies on the Lattice, to appear.

  29. A.J Sommese and C.W. Wampler, The numerical solution of systems of polynomials arising in Engineering and Science, World Scientific Publishing Company, Singapore (2005).

    Book  Google Scholar 

  30. T.Y. Li, Solving polynomial systems by the homotopy continuation method, in Handbook of numerical analysis. Vol. XI, North-Holland, Amsterdam Netherlands (2003), pg. 209.

    Google Scholar 

  31. D.J. Bates, J.D. Hauenstein, A.J. Sommese and C.W. Wampler, Adaptive multiprecision path tracking, SIAM J. Num. Anal. 46 (2008) 722.

    Article  MathSciNet  Google Scholar 

  32. D.J. Bates, J.D. Hauenstein, A.J. Sommese and C.W. Wampler, Stepsize control for adaptive multiprecision path tracking, Contemp. Math. 496 (2009) 21.

    Article  Google Scholar 

  33. D.J. Bates, J.D. Hauenstein, A.J. Sommese and C.W. Wampler, Bertini: Software for numerical algebraic geometry, available at https://doi.org/www.nd.edu/∼sommese/bertini.

  34. J. Verschelde, Algorithm 795: Phcpack: a general-purpose solver for polynomial systems by homotopy continuation, ACM Trans. Math. Soft. 25 (1999) 251.

    Article  Google Scholar 

  35. T. Gunji, S. Kim, M. Kojima, A. Takeda, K. Fujisawa and T. Mizutani, Phom: a polyhedral homotopy continuation method for polynomial systems, Computing 73 (2004) 57.

    Article  MathSciNet  Google Scholar 

  36. A.P. Morgan, A.J. Sommese and L.T. Watson, Finding all isolated solutions to polynomial systems using hompack, ACM Trans. Math. Softw. 15 (1989) 93.

    Article  MathSciNet  Google Scholar 

  37. T. Gao, T.Y. Li and M. Wu, Algorithm 846: Mixedvol: a software package for mixed-volume computation, ACM Trans. Math. Softw. 31 (2005) 555.

    Article  MathSciNet  Google Scholar 

  38. T.L. Lee, T.Y. Li and C.H. Tsai, Hom4ps-2.0, a software package for solving polynomial systems by the polyhedral homotopy continuation method, Computing 83 (2008) 109.

    Article  MathSciNet  Google Scholar 

  39. D.N. Bernstein, The number of roots of a system of equations, Funkts. Anal. Pril. 9 (1975) 1.

    Article  MathSciNet  Google Scholar 

  40. A.G. Khovanski, Newton polyhedra and the genus of complete intersections, Funkts. Anal. Pril. 12 (1978) 51.

    MathSciNet  Google Scholar 

  41. A.G. Kushnirenko, Newton polytopes and the bezout theorem, Funkts. Anal. Pril. 10 (1976) 82.

    Google Scholar 

  42. J.D. Hauenstein and F. Sottile, alphaCertified: Software for certifying numerical solutions to polynomial equations, available at https://doi.org/www.math.tamu.edu/∼sottile/research/stories/alphaCertified.

  43. L. Blum, F. Cucker, M. Shub and S. Smale, Complexity and real computation, Springer-Verlag, New York U.S.A. (1998).

    Book  Google Scholar 

  44. J.D. Hauenstein and F. Sottile, Algorithm 921: alphaCertified: certifying solutions to polynomial systems, to appear.

  45. S. Gurrieri, A. Lukas and A. Micu, Heterotic on half-flat, Phys. Rev. D 70 (2004) 126009 [https://doi.org/hep-th/0408121] [https://doi.org/INSPIRE].

    ADS  Google Scholar 

  46. B. de Carlos, S. Gurrieri, A. Lukas and A. Micu, Moduli stabilisation in heterotic string compactifications, JHEP 03 (2006) 005 [https://doi.org/hep-th/0507173] [https://doi.org/INSPIRE].

    Article  MathSciNet  Google Scholar 

  47. A. Micu, E. Palti and P. Saffin, M-theory on seven-dimensional manifolds with SU(3) structure, JHEP 05 (2006) 048 [https://doi.org/hep-th/0602163] [https://doi.org/INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. U.H. Danielsson, S.S. Haque, P. Koerber, G. Shiu, T. Van Riet, et al., de Sitter hunting in a classical landscape, Fortsch. Phys. 59 (2011) 897 [https://doi.org/arXiv:1103.4858] [https://doi.org/INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. C. Caviezel, P. Koerber, S. Körs, D. Lüst, T. Wrase, et al., On the Cosmology of Type IIA Compactifications on SU(3)-structure Manifolds, JHEP 04 (2009) 010 [https://doi.org/arXiv:0812.3551] [https://doi.org/INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. R. Flauger, S. Paban, D. Robbins and T. Wrase, Searching for slow-roll moduli inflation in massive type IIA supergravity with metric fluxes, Phys. Rev. D 79 (2009) 086011 [https://doi.org/arXiv:0812.3886] [https://doi.org/INSPIRE].

    ADS  Google Scholar 

  51. Y.-H. He, Lectures on D-branes, gauge theories and Calabi-Yau singularities, (2004).

  52. J. Gray, Y.-H. He, V. Jejjala and B.D. Nelson, Exploring the vacuum geometry of N = 1 gauge theories, Nucl. Phys. B 750 (2006) 1 [https://doi.org/hep-th/0604208] [https://doi.org/INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. J. Gray, A. Hanany, Y.-H. He, V. Jejjala and N. Mekareeya, SQCD: A Geometric Apercu, JHEP 05 (2008) 099 [https://doi.org/arXiv:0803.4257] [https://doi.org/INSPIRE].

    Article  ADS  Google Scholar 

  54. D. Berenstein, Reverse geometric engineering of singularities, JHEP 04 (2002) 052 [https://doi.org/hep-th/0201093] [https://doi.org/INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, The Master Space of N = 1 Gauge Theories, JHEP 08 (2008) 012 [https://doi.org/arXiv:0801.1585] [https://doi.org/INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  56. D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, Mastering the Master Space, Lett. Math. Phys. 85 (2008) 163 [https://doi.org/arXiv:0801.3477] [https://doi.org/INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  57. J.D. Hauenstein, A.J. Sommese and C.W. Wampler, Regenerative cascade homotopies for solving polynomial systems, Appl. Math. Comput. 218 (2011) 1240.

    MathSciNet  MATH  Google Scholar 

  58. A.J. Sommese and J. Verschelde, Numerical homotopies to compute generic points on positive dimensional algebraic sets, J. Complexity 16 (2000) 572 [https://doi.org/math/9906198].

    Article  MathSciNet  Google Scholar 

  59. D. Mehta, Y.-H. He and J. Hauerstein, Numerical Algebraic Geometry and Moduli Space of Vacua, to appear.

  60. A. Belavin, A.M. Polyakov, A. Schwartz and Y. Tyupkin, Pseudoparticle Solutions of the Yang-Mills Equations, Phys. Lett. B 59 (1975) 85 [https://doi.org/INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  61. M. Atiyah, N.J. Hitchin, V. Drinfeld and Y. Manin, Construction of Instantons, Phys. Lett. A 65 (1978) 185 [https://doi.org/INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. E. Witten, σ-models and the ADHM construction of instantons, J. Geom. Phys. 15 (1995) 215 [https://doi.org/hep-th/9410052] [https://doi.org/INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  63. S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert Series of the One Instanton Moduli Space, JHEP 06 (2010) 100 [https://doi.org/arXiv:1005.3026] [https://doi.org/INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  64. S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics, JHEP 11 (2007) 050 [https://doi.org/hep-th/0608050] [https://doi.org/INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  65. T.-Y. Li and C.-H. Tsai, Hom4ps-2.0para: Parallelization of hom4ps-2.0 for solving polynomial systems, Parallel Comput. 35 (2009) 226.

    Article  MathSciNet  Google Scholar 

  66. T.Y. Li and X. Wang, The bkk root count in cn, Math. Comp.65 (1996) 1477.

    Article  ADS  MathSciNet  Google Scholar 

  67. J.M. Rojas, A convex geometric approach to counting the roots of a polynomial system, Theor. Comput. Sci. 133 (1994) 105.

    Article  MathSciNet  Google Scholar 

  68. J.M. Rojas and X. Wang, Counting affine roots of polynomial systems via pointed newton polytopes, J. Complexity 12 (1996) 116.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Hui He.

Additional information

ArXiv ePrint: https://doi.org/1203.4235

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, D., He, YH. & Hauenstein, J.D. Numerical algebraic geometry: a new perspective on gauge and string theories. J. High Energ. Phys. 2012, 18 (2012). https://doi.org/10.1007/JHEP07(2012)018

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)018

Keywords

Navigation