Skip to main content
Log in

Flavored co-annihilations

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Neutralino dark matter in supersymmetric models is revisited in the presence of flavor violation in the soft supersymmetry breaking sector. We focus on flavor violation in the sleptonic sector and study the implications for the co-annihilation regions. Flavor violation is introduced by a single \( {\widetilde{\mu }_R} - {\widetilde{\tau }_R} \) insertion in the slepton mass matrix. Limits on this insertion from BR(τ → μ + γ) are weak in some regions of the parameter space where cancellations happen within the amplitudes. We look for overlaps in parameter space where both the co-annihilation condition as well as the cancellations within the amplitudes occur. In mSUGRA, such overlap regions are not existent, whereas they are present in models with non-universal Higgs boundary conditions (NUHM). The effect of flavor violation is two fold: (a) it shifts the co-annihilation regions towards lighter neutralino masses (b) the co-annihilation cross sections would be modified with the inclusion of flavor violating diagrams which can contribute significantly. Even if flavor violation is within the presently allowed limits, this is sufficient to modify the thermally averaged cross-sections by about (10-15)% in mSUGRA and (20-30)% in NUHM, depending on the parameter space. In the overlap regions, the flavor violating cross sections become comparable and in some cases even dominant to the flavor conserving ones. A comparative study of the channels is presented for mSUGRA and NUHM cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996)195 [hep-ph/9506380] [INSPIRE].

    Article  ADS  Google Scholar 

  2. H. Goldberg, Constraint on the photino mass from cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].

    Article  ADS  Google Scholar 

  3. J.R. Ellis, J. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric relics from the big bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].

    Article  ADS  Google Scholar 

  4. P.H. Chankowski, J.R. Ellis, K.A. Olive and S. Pokorski, Cosmological fine tuning, supersymmetry and the gauge hierarchy problem, Phys. Lett. B 452 (1999) 28 [hep-ph/9811284] [INSPIRE].

    Article  ADS  Google Scholar 

  5. D. Larson et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-Derived Parameters, Astrophys. J. Suppl. 192 (2011) 16 [arXiv:1001.4635] [INSPIRE].

    Article  ADS  Google Scholar 

  6. N. Arkani-Hamed, A. Delgado and G. Giudice, The Well-tempered neutralino, Nucl. Phys. B 741 (2006)108 [hep-ph/0601041] [INSPIRE].

    Article  ADS  Google Scholar 

  7. H. Baer, C. Balázs, A. Belyaev, T. Krupovnickas and X. Tata, Updated reach of the CERN LHC and constraints from relic density, b → sγ and a(μ) in the mSUGRA model, JHEP 06 (2003)054 [hep-ph/0304303] [INSPIRE].

    Article  ADS  Google Scholar 

  8. A. Djouadi, M. Drees and J.-L. Kneur, Updated constraints on the minimal supergravity model, JHEP 03 (2006) 033 [hep-ph/0602001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. L. Calibbi, Y. Mambrini and S. Vempati, SUSY-GUTs, SUSY-seesaw and the neutralino dark matter, JHEP 09 (2007) 081 [arXiv:0704.3518] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. U. Chattopadhyay, D. Das, A. Datta and S. Poddar, Non-zero trilinear parameter in the mSUGRA model: Dark matter and collider signals at Tevatron and LHC, Phys. Rev. D 76 (2007)055008 [arXiv:0705.0921] [INSPIRE].

  11. V. Barger, D. Marfatia and A. Mustafayev, Neutrino sector impacts SUSY dark matter, Phys. Lett. B 665 (2008) 242 [arXiv:0804.3601] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M. Gomez, S. Lola, P. Naranjo and J. Rodriguez-Quintero, WMAP Dark Matter Constraints on Yukawa Unification with Massive Neutrinos, JHEP 04 (2009) 043 [arXiv:0901.4013] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S.K. Kang, A. Kato, T. Morozumi and N. Yokozaki, Threshold corrections to the radiative breaking of electroweak symmetry and neutralino dark matter in supersymmetric seesaw model, Phys. Rev. D 81 (2010) 016011 [arXiv:0909.2484] [INSPIRE].

    ADS  Google Scholar 

  14. C. Biggio and L. Calibbi, Phenomenology of SUSY SU(5) with type-I+III seesaw, JHEP 10 (2010)037 [arXiv:1007.3750] [INSPIRE].

    Article  ADS  Google Scholar 

  15. J. Esteves, J. Romao, M. Hirsch, F. Staub and W. Porod, Supersymmetric type-III seesaw: lepton flavour violating decays and dark matter, Phys. Rev. D 83 (2011) 013003 [arXiv:1010.6000] [INSPIRE].

    ADS  Google Scholar 

  16. J. Ellis, A. Mustafayev and K.A. Olive, Resurrecting No-Scale Supergravity Phenomenology, Eur. Phys. J. C 69 (2010) 219 [arXiv:1004.5399] [INSPIRE].

    Article  ADS  Google Scholar 

  17. K. Kadota, K.A. Olive and L. Velasco-Sevilla, A Sneutrino NLSP in the νCMSSM, Phys. Rev. D 79 (2009) 055018 [arXiv:0902.2510] [INSPIRE].

    ADS  Google Scholar 

  18. R. Barbieri, L.J. Hall and A. Strumia, Violations of lepton flavor and CP in supersymmetric unified theories, Nucl. Phys. B 445 (1995) 219 [hep-ph/9501334] [INSPIRE].

    Article  ADS  Google Scholar 

  19. L. Calibbi, A. Faccia, A. Masiero and S. Vempati, Lepton flavour violation from SUSY-GUTs: Where do we stand for MEG, PRISM/PRIME and a super flavour factory, Phys. Rev. D 74 (2006) 116002 [hep-ph/0605139] [INSPIRE].

    ADS  Google Scholar 

  20. E. Dudas, S. Pokorski and C.A. Savoy, Soft scalar masses in supergravity with horizontal U(1)x gauge symmetry, Phys. Lett. B 369 (1996) 255 [hep-ph/9509410] [INSPIRE].

    Article  ADS  Google Scholar 

  21. E. Dudas, C. Grojean, S. Pokorski and C.A. Savoy, Abelian flavor symmetries in supersymmetric models, Nucl. Phys. B 481 (1996) 85 [hep-ph/9606383] [INSPIRE].

    Article  ADS  Google Scholar 

  22. R. Barbieri, L.J. Hall and A. Romanino, Consequences of a U(2) flavor symmetry, Phys. Lett. B 401 (1997) 47 [hep-ph/9702315] [INSPIRE].

    Article  ADS  Google Scholar 

  23. T. Kobayashi, H. Nakano, H. Terao and K. Yoshioka, Flavor violation in supersymmetric theories with gauged flavor symmetries, Prog. Theor. Phys. 110 (2003) 247 [hep-ph/0211347] [INSPIRE].

    Article  ADS  Google Scholar 

  24. P.H. Chankowski, K. Kowalska, S. Lavignac and S. Pokorski, Update on fermion mass models with an anomalous horizontal U(1) symmetry, Phys. Rev. D 71 (2005) 055004 [hep-ph/0501071] [INSPIRE].

    ADS  Google Scholar 

  25. S. Antusch, S.F. King, M. Malinsky and G.G. Ross, Solving the SUSY Flavour and CP Problems with Non-Abelian Family Symmetry and Supergravity, Phys. Lett. B 670 (2009) 383 [arXiv:0807.5047] [INSPIRE].

    Article  ADS  Google Scholar 

  26. C.A. Scrucca, Soft masses in superstring models with anomalous U(1) symmetries, JHEP 12 (2007)092 [arXiv:0710.5105] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J. Esteves et al., LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM, JHEP 12 (2010) 077 [arXiv:1011.0348] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Esteves et al., Dark matter and LHC phenomenology in a left-right supersymmetric model, JHEP 01 (2012) 095 [arXiv:1109.6478] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi and T. Yanagida, Lepton flavor violation in the supersymmetric standard model with seesaw induced neutrino masses, Phys. Lett. B 357 (1995)579 [hep-ph/9501407] [INSPIRE].

    Article  ADS  Google Scholar 

  30. I. Masina and C.A. Savoy, Sleptonarium: Constraints on the CP and flavor pattern of scalar lepton masses, Nucl. Phys. B 661 (2003) 365 [hep-ph/0211283] [INSPIRE].

    Article  ADS  Google Scholar 

  31. P. Paradisi, Constraints on SUSY lepton flavor violation by rare processes, JHEP 10 (2005) 006 [hep-ph/0505046] [INSPIRE].

    Article  ADS  Google Scholar 

  32. J. Hisano, R. Kitano and M.M. Nojiri, Slepton oscillation at large hadron collider, Phys. Rev. D 65 (2002) 116002 [hep-ph/0202129] [INSPIRE].

    ADS  Google Scholar 

  33. J. Hisano, M.M. Nojiri and W. Sreethawong, Discriminating Electroweak-ino Parameter Ordering at the LHC and Its Impact on LFV Studies, JHEP 06 (2009) 044 [arXiv:0812.4496] [INSPIRE].

    Article  ADS  Google Scholar 

  34. K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].

    ADS  Google Scholar 

  35. G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. M. Ciuchini et al., Soft SUSY breaking grand unification: Leptons versus quarks on the flavor playground, Nucl. Phys. B 783 (2007) 112 [hep-ph/0702144] [INSPIRE].

    Article  ADS  Google Scholar 

  37. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    Article  ADS  Google Scholar 

  38. https://twiki.cern.ch/twiki/bin/view/AtlasPublic, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG.

  39. J.R. Ellis, T. Falk, K.A. Olive and Y. Santoso, Exploration of the MSSM with nonuniversal Higgs masses, Nucl. Phys. B 652 (2003) 259 [hep-ph/0210205] [INSPIRE].

    Article  ADS  Google Scholar 

  40. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses, JHEP 07 (2005) 065 [hep-ph/0504001] [INSPIRE].

    Article  ADS  Google Scholar 

  41. J.R. Ellis, K.A. Olive and P. Sandick, Varying the Universality of Supersymmetry-Breaking Contributions to MSSM Higgs Boson Masses, Phys. Rev. D 78 (2008) 075012 [arXiv:0805.2343] [INSPIRE].

    ADS  Google Scholar 

  42. J.R. Ellis, S. King and J. Roberts, The Fine-Tuning Price of Neutralino Dark Matter in Models with Non-Universal Higgs Masses, JHEP 04 (2008) 099 [arXiv:0711.2741] [INSPIRE].

    Article  ADS  Google Scholar 

  43. L. Roszkowski, R. Ruiz de Austri, R. Trotta, Y.-L.S. Tsai and T.A. Varley, Global fits of the Non-Universal Higgs Model, Phys. Rev. D 83 (2011) 015014 [arXiv:0903.1279] [INSPIRE].

    ADS  Google Scholar 

  44. D. Das, A. Goudelis and Y. Mambrini, Exploring SUSY light Higgs boson scenarios via dark matter experiments, JCAP 12 (2010) 018 [arXiv:1007.4812] [INSPIRE].

    Article  ADS  Google Scholar 

  45. D. Chowdhury and S.K. Vempati, Flavor Effects in the Neutralino Cross-sections in the Early Universe, in preparation.

  46. I. Hinchliffe and F. Paige, Lepton flavor violation at the CERN LHC, Phys. Rev. D 63 (2001)115006 [hep-ph/0010086] [INSPIRE].

    ADS  Google Scholar 

  47. B. Allanach, J. Conlon and C. Lester, Measuring Smuon-Selectron Mass Splitting at the CERN LHC and Patterns of Supersymmetry Breaking, Phys. Rev. D 77 (2008) 076006 [arXiv:0801.3666] [INSPIRE].

    ADS  Google Scholar 

  48. A.J. Buras, L. Calibbi and P. Paradisi, Slepton mass-splittings as a signal of LFV at the LHC, JHEP 06 (2010) 042 [arXiv:0912.1309] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A. Bartl et al., Test of lepton flavor violation at LHC, Eur. Phys. J. C 46 (2006) 783 [hep-ph/0510074] [INSPIRE].

    Article  ADS  Google Scholar 

  50. M.M. Nojiri, Polarization of τ lepton from scalar τ decay as a probe of neutralino mixing, Phys. Rev. D 51 (1995) 6281 [hep-ph/9412374] [INSPIRE].

    ADS  Google Scholar 

  51. M.M. Nojiri, K. Fujii and T. Tsukamoto, Confronting the minimal supersymmetric standard model with the study of scalar leptons at future linear e+e colliders, Phys. Rev. D 54 (1996) 6756 [hep-ph/9606370] [INSPIRE].

    ADS  Google Scholar 

  52. M. Guchait and D. Roy, Using τ polarization as a distinctive SUGRA signature at LHC, Phys. Lett. B 541 (2002) 356 [hep-ph/0205015] [INSPIRE].

    Article  ADS  Google Scholar 

  53. K. Hamaguchi, Y. Kuno, T. Nakaya and M.M. Nojiri, A Study of late decaying charged particles at future colliders, Phys. Rev. D 70 (2004) 115007 [hep-ph/0409248] [INSPIRE].

    ADS  Google Scholar 

  54. R. Godbole, M. Guchait and D. Roy, Using Tau Polarization to probe the Stau Co-annihilation Region of mSUGRA Model at LHC, Phys. Rev. D 79 (2009) 095015 [arXiv:0807.2390] [INSPIRE].

    ADS  Google Scholar 

  55. A. Brignole and A. Rossi, Anatomy and phenomenology of mu-tau lepton flavor violation in the MSSM, Nucl. Phys. B 701 (2004) 3 [hep-ph/0404211] [INSPIRE].

    Article  ADS  Google Scholar 

  56. D. Chowdhury, R. Garani and S.K. Vempati, SUSEFLAV: Program for supersymmetric mass spectra with seesaw mechanism and rare lepton flavor violating decays, arXiv:1109.3551 [INSPIRE].

  57. D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].

    Article  ADS  Google Scholar 

  58. S. Heinemeyer, W. Hollik and G. Weiglein, The Mass of the lightest MSSM Higgs boson: A Compact analytical expression at the two loop level, Phys. Lett. B 455 (1999) 179 [hep-ph/9903404] [INSPIRE].

    Article  ADS  Google Scholar 

  59. A. Pukhov et al., CompHEP: A Package for evaluation of Feynman diagrams and integration over multiparticle phase space, hep-ph/9908288 [INSPIRE].

  60. LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

    ADS  Google Scholar 

  61. J. Frere, D. Jones and S. Raby, Fermion Masses and Induction of the Weak Scale by Supergravity, Nucl. Phys. B 222 (1983) 11 [INSPIRE].

    Article  ADS  Google Scholar 

  62. L. Álvarez-Gaumé, J. Polchinski and M.B. Wise, Minimal Low-Energy Supergravity, Nucl. Phys. B 221 (1983) 495 [INSPIRE].

    Article  ADS  Google Scholar 

  63. M. Claudson, L.J. Hall and I. Hinchliffe, Low-Energy Supergravity: False Vacua and Vacuous Predictions, Nucl. Phys. B 228 (1983) 501 [INSPIRE].

    Article  ADS  Google Scholar 

  64. T. Nihei, L. Roszkowski and R. Ruiz de Austri, Exact cross-sections for the neutralino slepton coannihilation, JHEP 07 (2002) 024 [hep-ph/0206266] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debtosh Chowdhury.

Additional information

ArXiv ePrint: 1104.4467

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, D., Garani, R. & Vempati, S.K. Flavored co-annihilations. J. High Energ. Phys. 2012, 14 (2012). https://doi.org/10.1007/JHEP06(2012)014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)014

Keywords

Navigation