Skip to main content
Log in

Emergence of the electroweak scale through the Higgs portal

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Having discovered a candidate for the final piece of the Standard Model, the Higgs boson, the question remains why its vacuum expectation value and its mass are so much smaller than the Planck scale (or any other high scale of new physics). One elegant solution was provided by Coleman and Weinberg, where all mass scales are generated from dimensionless coupling constants via dimensional transmutation. However, the original Coleman-Weinberg scenario predicts a Higgs mass which is too light; it is parametrically suppressed compared to the mass of the vectors bosons, and hence is much lighter than the observed value. In this paper we argue that a mass scale, generated via the Coleman-Weinberg mechanism in a hidden sector and then transmitted to the Standard Model through a Higgs portal, can naturally explain the smallness of the electroweak scale compared to the UV cutoff scale, and at the same time be consistent with the observed value. We analyse the phenomenology of such a model in the context of present and future colliders and low energy measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].

    Article  ADS  Google Scholar 

  3. P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. G. Guralnik, C. Hagen and T. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    Article  ADS  Google Scholar 

  5. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  6. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  7. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  8. R. Hempfling, The next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].

    Article  ADS  Google Scholar 

  9. W.-F. Chang, J.N. Ng and J.M. Wu, Shadow Higgs from a scale-invariant hidden U(1)(s) model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].

    ADS  Google Scholar 

  10. K.A. Meissner and H. Nicolai, Conformal symmetry and the standard model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. K.A. Meissner and H. Nicolai, Effective action, conformal anomaly and the issue of quadratic divergences, Phys. Lett. B 660 (2008) 260 [arXiv:0710.2840] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Foot, A. Kobakhidze and R.R. Volkas, Electroweak Higgs as a pseudo-goldstone boson of broken scale invariance, Phys. Lett. B 655 (2007) 156 [arXiv:0704.1165] [INSPIRE].

    Article  ADS  Google Scholar 

  13. R. Foot, A. Kobakhidze, K. McDonald and R. Volkas, Neutrino mass in radiatively-broken scale-invariant models, Phys. Rev. D 76 (2007) 075014 [arXiv:0706.1829] [INSPIRE].

    ADS  Google Scholar 

  14. R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].

    ADS  Google Scholar 

  15. S. Iso, N. Okada and Y. Orikasa, Classically conformal B-L extended standard model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Holthausen, M. Lindner and M.A. Schmidt, Radiative symmetry breaking of the minimal left-right symmetric model, Phys. Rev. D 82 (2010) 055002 [arXiv:0911.0710] [INSPIRE].

    ADS  Google Scholar 

  17. R. Foot, A. Kobakhidze and R.R. Volkas, Stable mass hierarchies and dark matter from hidden sectors in the scale-invariant standard model, Phys. Rev. D 82 (2010) 035005 [arXiv:1006.0131] [INSPIRE].

    ADS  Google Scholar 

  18. L. Alexander-Nunneley and A. Pilaftsis, The minimal scale invariant extension of the standard model, JHEP 09 (2010) 021 [arXiv:1006.5916] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S. Iso and Y. Orikasa, TeV Scale B-L model with a flat Higgs potential at the Planck scaleIn view of the hierarchy problem, PTEP 2013 (2013) 023B08 [arXiv:1210.2848] [INSPIRE].

    Google Scholar 

  20. W.A. Bardeen, On naturalness in the standard model, FERMILAB-CONF-95-391 (1995).

  21. T. Binoth and J.J. van der Bij, Influence of strongly coupled, hidden scalars on Higgs signals, Z. Phys. C 75 (1997) 17 [hep-ph/9608245] [INSPIRE].

    Google Scholar 

  22. R. Schabinger and J.D. Wells, A minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the large hadron collider, Phys. Rev. D 72 (2005) 093007 [hep-ph/0509209] [INSPIRE].

    ADS  Google Scholar 

  23. B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].

  24. S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General relativity: an Einstein centenary survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979).

    Google Scholar 

  25. L. Okun, Limits of electrodynamics: paraphotons?, Sov. Phys. JETP 56 (1982) 502 [Zh. Eksp. Teor. Fiz. 83 (1982) 892] [INSPIRE].

  26. B. Holdom, Two U(1)’s and ϵ charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].

    Article  ADS  Google Scholar 

  27. M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar and K. Schmidt-Hoberg, LHC and Tevatron bounds on the dark matter direct detection cross-section for vector mediators, JHEP 07 (2012) 123 [arXiv:1204.3839] [INSPIRE].

    Article  ADS  Google Scholar 

  28. CMS collaboration, Search for narrow resonances in dilepton mass spectra in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 714 (2012) 158 [arXiv:1206.1849] [INSPIRE].

    ADS  Google Scholar 

  29. J. Jaeckel, M. Jankowiak and M. Spannowsky, LHC probes the hidden sector, arXiv:1212.3620 [INSPIRE].

  30. S. Bock et al., Measuring hidden Higgs and strongly-interacting Higgs scenarios, Phys. Lett. B 694 (2010) 44 [arXiv:1007.2645] [INSPIRE].

    Article  ADS  Google Scholar 

  31. C. Englert, T. Plehn, D. Zerwas and P.M. Zerwas, Exploring the Higgs portal, Phys. Lett. B 703 (2011) 298 [arXiv:1106.3097] [INSPIRE].

    Article  ADS  Google Scholar 

  32. C. Englert, T. Plehn, M. Rauch, D. Zerwas and P.M. Zerwas, LHC: standard Higgs and hidden Higgs, Phys. Lett. B 707 (2012) 512 [arXiv:1112.3007] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J.H. Collins and J.D. Wells, Hidden-sector Higgs bosons at high-energy electron-positron colliders, arXiv:1210.0205 [INSPIRE].

  34. J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for invisible Higgs decays with global fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].

    Article  ADS  Google Scholar 

  35. E. Weihs and J. Zurita, Dark Higgs models at the 7 TeV LHC, JHEP 02 (2012) 041 [arXiv:1110.5909] [INSPIRE].

    Article  ADS  Google Scholar 

  36. D. Bertolini and M. McCullough, The social Higgs, JHEP 12 (2012) 118 [arXiv:1207.4209] [INSPIRE].

    Article  ADS  Google Scholar 

  37. B. Batell, D. McKeen and M. Pospelov, Singlet neighbors of the Higgs boson, JHEP 10 (2012) 104 [arXiv:1207.6252] [INSPIRE].

    Article  ADS  Google Scholar 

  38. C. Burgess et al., Continuous global symmetries and hyperweak interactions in string compactifications, JHEP 07 (2008) 073 [arXiv:0805.4037] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. M. Ahlers, J. Jaeckel, J. Redondo and A. Ringwald, Probing hidden sector photons through the Higgs window, Phys. Rev. D 78 (2008) 075005 [arXiv:0807.4143] [INSPIRE].

    ADS  Google Scholar 

  40. M.J. Dolan, C. Englert and M. Spannowsky, New physics in LHC Higgs boson pair production, Phys. Rev. D 87 (2013) 055002 [arXiv:1210.8166] [INSPIRE].

    ADS  Google Scholar 

  41. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  42. A. Bredenstein, A. Denner, S. Dittmaier and M. Weber, Precise predictions for the Higgs-boson decay HW W/ZZ → 4 leptons, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011] [INSPIRE].

    ADS  Google Scholar 

  43. G. Ciapetti, Hidden valley Higgs decays in the ATLAS detector, ATL-COM-PHYS-2008-155 (2008).

  44. A. Nisati, S. Petrarca and G. Salvini, On the possible detection of massive stable exotic particles at the LHC, ATL-MUON-97-205 (1997).

  45. S. Ambrosanio et al., Measuring the SUSY breaking scale at the LHC in the slepton NLSP scenario of GMSB models, ATL-PHYS-2002-006 (2000).

  46. S. Tarem et al., Can ATLAS avoid missing the long lived stau?, ATL-PHYS-PUB-2005-022 (2005).

  47. J. Ellis, A.R. Raklev and O.K. Oye, Measuring massive metastable charged particles with ATLAS RPC timing information., ATL-PHYS-PUB-2007-016 (2006).

  48. S. Tarem, S. Bressler, H. Nomoto and A. Di Mattia, Trigger and reconstruction for a heavy long lived charged particles with the ATLAS detector, ATL-PHYS-PUB-2008-001 (2008).

  49. ATLAS collaboration, An update of combined measurements of the new Higgs-like boson with high mass resolution channels, ATLAS-CONF-2012-170 (2012).

  50. CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045 (2012).

  51. M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    Article  ADS  Google Scholar 

  52. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  53. A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].

    Article  ADS  Google Scholar 

  54. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].

    Article  ADS  Google Scholar 

  55. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Ellis and T. You, Global analysis of the Higgs candidate with mass ~ 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].

    Article  ADS  Google Scholar 

  57. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].

    Article  ADS  Google Scholar 

  58. T. Plehn and M. Rauch, Higgs couplings after the discovery, Europhys. Lett. 100 (2012) 11002 [arXiv:1207.6108] [INSPIRE].

    Article  Google Scholar 

  59. T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Robust determination of the Higgs couplings: power to the data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].

    ADS  Google Scholar 

  60. E. Masso and V. Sanz, Limits on anomalous couplings of the Higgs to electroweak gauge bosons from LEP and LHC, Phys. Rev. D 87 (2013) 033001 [arXiv:1211.1320] [INSPIRE].

    ADS  Google Scholar 

  61. B.A. Dobrescu and J.D. Lykken, Coupling spans of the Higgs-like boson, JHEP 02 (2013) 073 [arXiv:1210.3342] [INSPIRE].

    Article  ADS  Google Scholar 

  62. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings at a linear collider, Europhys. Lett. 101 (2013) 51001 [arXiv:1301.1322] [INSPIRE].

    Article  ADS  Google Scholar 

  63. C.F. Duerig, Determination of the Higgs decay width at ILC, Master thesis, University Bonn, Bonn, Germany (2012), http://lhc-ilc.physik.uni-bonn.de/thesis/Masterarbeitduerig.pdf.

  64. B.A. Dobrescu, G.D. Kribs and A. Martin, Higgs Underproduction at the LHC, Phys. Rev. D 85 (2012) 074031 [arXiv:1112.2208] [INSPIRE].

    ADS  Google Scholar 

  65. G.D. Kribs and A. Martin, Enhanced di-Higgs production through light colored scalars, Phys. Rev. D 86 (2012) 095023 [arXiv:1207.4496] [INSPIRE].

    ADS  Google Scholar 

  66. M. Bowen, Y. Cui and J.D. Wells, Narrow trans-TeV Higgs bosons and Hhh decays: two LHC search paths for a hidden sector Higgs boson, JHEP 03 (2007) 036 [hep-ph/0701035] [INSPIRE].

    Article  ADS  Google Scholar 

  67. T. Plehn, M. Spira and P. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].

  68. M. Spira, Hpair, http://people.web.psi.ch/spira/proglist.html.

  69. G.G. Raffelt and D.S. Dearborn, Bounds on hadronic axions from stellar evolution, Phys. Rev. D 36 (1987) 2211 [INSPIRE].

    ADS  Google Scholar 

  70. G.G. Raffelt and D.S. Dearborn, Bounds on weakly interacting particles from observational lifetimes of helium burning stars, Phys. Rev. D 37 (1988) 549 [INSPIRE].

    ADS  Google Scholar 

  71. G.G. Raffelt and G.D. Starkman, Stellar energy transfer by keV mass scalars, Phys. Rev. D 40 (1989) 942 [INSPIRE].

    ADS  Google Scholar 

  72. G.G. Raffelt, Stars as laboratories for fundamental physics: the astrophysics of neutrinos, axions, and other weakly interacting particles, Chicago University Press, Chicago, U.S.A. (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Englert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Englert, C., Jaeckel, J., Khoze, V.V. et al. Emergence of the electroweak scale through the Higgs portal. J. High Energ. Phys. 2013, 60 (2013). https://doi.org/10.1007/JHEP04(2013)060

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)060

Keywords

Navigation