Skip to main content
Log in

Interleaved parton showers and tuning prospects

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

General-purpose Monte Carlo event generators have become important tools in particle physics, allowing the simulation of exclusive hadronic final states. In this article we examine the Pythia 8 generator, in particular focusing on its parton-shower algorithms. Some relevant new additions to the code are introduced, that should allow for a better description of data. We also implement and compare with 2 → 3 real-emission QCD matrix elements, to check how well the shower algorithm fills the phase space away from the soft and collinear regions. A tuning of the generator to Tevatron data is performed for two PDF sets and the impact of first new LHC data is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  2. G. Marchesini and B.R. Webber, Simulation of QCD Jets Including Soft Gluon Interference, Nucl. Phys. B 238 (1984) 1 [SPIRES].

    Article  ADS  Google Scholar 

  3. G. Marchesini and B.R. Webber, Monte Carlo Simulation of General Hard Processes with Coherent QCD Radiation, Nucl. Phys. B 310 (1988) 461 [SPIRES].

    Article  ADS  Google Scholar 

  4. V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [SPIRES].

    Google Scholar 

  5. G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [SPIRES].

    Article  ADS  Google Scholar 

  6. Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e + e Annihilation by Perturbation Theory in Quantum Chromodynamics, Sov. Phys. JETP 46 (1977) 641 [SPIRES].

    ADS  Google Scholar 

  7. V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP 3 (1956) 65 [SPIRES].

    MathSciNet  MATH  Google Scholar 

  8. M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [SPIRES].

    Article  ADS  Google Scholar 

  9. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [SPIRES].

    Article  ADS  Google Scholar 

  10. S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [SPIRES].

    Article  ADS  Google Scholar 

  11. Z. Nagy and D.E. Soper, A new parton shower algorithm: Shower evolution, matching at leading and next-to-leading order level, hep-ph/0601021 [SPIRES].

  12. S. Schumann and F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [SPIRES].

    Article  ADS  Google Scholar 

  13. J.-C. Winter and F. Krauss, Initial-state showering based on colour dipoles connected to incoming parton lines, JHEP 07 (2008) 040 [arXiv:0712.3913] [SPIRES].

    Article  ADS  Google Scholar 

  14. W.T. Giele, D.A. Kosower and P.Z. Skands, A Simple shower and matching algorithm, Phys. Rev. D 78 (2008) 014026 [arXiv:0707.3652] [SPIRES].

    ADS  Google Scholar 

  15. M. Dinsdale, M. Ternick and S. Weinzierl, Parton showers from the dipole formalism, Phys. Rev. D 76 (2007) 094003 [arXiv:0709.1026] [SPIRES].

    ADS  Google Scholar 

  16. T. Sjöstrand and M. van Zijl, A Multiple Interaction Model for the Event Structure in Hadron Collisions, Phys. Rev. D 36 (1987) 2019 [SPIRES].

    ADS  Google Scholar 

  17. T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [SPIRES].

    Article  ADS  Google Scholar 

  18. T. Sjöstrand and P.Z. Skands, Multiple interactions and the structure of beam remnants, JHEP 03 (2004) 053 [hep-ph/0402078] [SPIRES].

    Article  ADS  Google Scholar 

  19. G. Gustafson, Dual Description of a Confined Color Field, Phys. Lett. B 175 (1986) 453 [SPIRES].

    ADS  Google Scholar 

  20. G. Gustafson and U. Pettersson, Dipole Formulation of QCD Cascades, Nucl. Phys. B 306 (1988) 746 [SPIRES].

    Article  ADS  Google Scholar 

  21. L. Lönnblad, ARIADNE version 4: A Program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [SPIRES].

    Article  ADS  Google Scholar 

  22. T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  23. H. Hoeth, private communication (2009).

  24. CDF collaboration, R.D. Field, The underlying event in hard scattering processes, hep-ph/0201192 [SPIRES].

  25. J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [SPIRES].

    Article  ADS  Google Scholar 

  26. S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD Matrix Elements + Parton Showers, JHEP 11 (2001) 063 [hep-ph/0109231] [SPIRES].

    Article  ADS  Google Scholar 

  27. L. Lönnblad, Correcting the colour-dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [SPIRES].

    Article  Google Scholar 

  28. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [SPIRES].

    Article  ADS  Google Scholar 

  29. S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavour production, JHEP 08 (2003) 007 [hep-ph/0305252] [SPIRES].

    Article  ADS  Google Scholar 

  30. S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [SPIRES].

    Article  ADS  Google Scholar 

  31. C.W. Bauer, F.J. Tackmann and J. Thaler, GenEvA. I. A New framework for event generation, JHEP 12 (2008) 010 [arXiv:0801.4026] [SPIRES].

    Article  ADS  Google Scholar 

  32. N. Lavesson and L. Lönnblad, Extending CKKW-merging to One-Loop Matrix Elements, JHEP 12 (2008) 070 [arXiv:0811.2912] [SPIRES].

    Article  ADS  Google Scholar 

  33. K. Hamilton and P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements, JHEP 06 (2010) 039 [arXiv:1004.1764] [SPIRES].

    Article  ADS  Google Scholar 

  34. G. Miu and T. Sjöstrand, W production in an improved parton shower approach, Phys. Lett. B 449 (1999) 313 [hep-ph/9812455] [SPIRES].

    ADS  Google Scholar 

  35. E. Norrbin and T. Sjöstrand, QCD radiation off heavy particles, Nucl. Phys. B 603 (2001) 297 [hep-ph/0010012] [SPIRES].

    Article  ADS  Google Scholar 

  36. R. Corke and T. Sjöstrand, Improved Parton Showers at Large Transverse Momenta, Eur. Phys. J. C 69 (2010) 1 [arXiv:1003.2384] [SPIRES].

    Article  ADS  Google Scholar 

  37. M.H. Seymour, Matrix element corrections to parton shower algorithms, Comp. Phys. Commun. 90 (1995) 95 [hep-ph/9410414] [SPIRES].

    Article  ADS  Google Scholar 

  38. G. Corcella and M.H. Seymour, Matrix element corrections to parton shower simulations of heavy quark decay, Phys. Lett. B 442 (1998) 417 [hep-ph/9809451] [SPIRES].

    ADS  Google Scholar 

  39. G. Corcella and M.H. Seymour, Initial state radiation in simulations of vector boson production at hadron colliders, Nucl. Phys. B 565 (2000) 227 [hep-ph/9908388] [SPIRES].

    Article  ADS  Google Scholar 

  40. CDF collaboration, D. Kar, Measurement of the Underlying Event at Tevatron, arXiv:0905.2323 [SPIRES].

  41. R.D. Field, The Underlying Event in Hard Scattering Processes, recent talks available at http://www.phys.ufl.edu/∼rfield/cdf/rdf_talks.html.

  42. CDF collaboration, R. Field and R.C. Group, PYTHIA tune A, HERWIG and JIMMY in Run 2at CDF, hep-ph/0510198 [SPIRES].

  43. A. Buckley et al., Rivet user manual, arXiv:1003.0694 [SPIRES].

  44. A. Buckley, H. Hoeth, H. Lacker, H. Schulz and J.E. von Seggern, Systematic event generator tuning for the LHC, Eur. Phys. J. C 65 (2010) 331 [arXiv:0907.2973] [SPIRES].

    Article  ADS  Google Scholar 

  45. A. Buckley, H. Hoeth, H. Lacker, H. Schulz and E. von Seggern, Monte Carlo tuning and generator validation, arXiv:0906.0075 [SPIRES].

  46. P.Z. Skands, Tuning Monte Carlo Generators: The Perugia Tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [SPIRES].

    ADS  Google Scholar 

  47. A. Moraes, C. Buttar and I. Dawson, Prediction for minimum bias and the underlying event at LHC energies, Eur. Phys. J. C 50 (2007) 435 [SPIRES].

    Article  ADS  Google Scholar 

  48. ATLAS collaboration, ATLAS Monte Carlo tunes for MC09, ATL-PHYS-PUB-2010-002 (2010).

  49. ATLAS collaboration, Charged particle multiplicities in pp interactions at \( \sqrt {s} = 0.9 \) and 7 TeV inadiffractive limited phase space measured with the ATLAS detector at the LHC and a new pythia6 tune, ATLAS-CONF-2010-031 (2010).

  50. ATLAS collaboration, Track-based underlying event measurements in pp collisions at \( \sqrt {s} = 900\;GeV \) and 7 TeV with the ATLAS Detector at the LHC, ATLAS-CONF-2010-029 (2010).

  51. T. Sjöstrand, A Model for Initial State Parton Showers, Phys. Lett. B 157 (1985) 321 [SPIRES].

    ADS  Google Scholar 

  52. R. Corke and T. Sjöstrand, Multiparton Interactions and Rescattering, JHEP 01 (2010) 035 [arXiv:0911.1909] [SPIRES].

    Article  ADS  Google Scholar 

  53. G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  54. Y.L. Dokshitzer, D. Diakonov and S.I. Troian, Hard Processes in Quantum Chromodynamics, Phys. Rept. 58 (1980) 269 [SPIRES].

    Article  ADS  Google Scholar 

  55. M. Ciafaloni, Coherence Effects in Initial Jets at Small Q 2 /s, Nucl. Phys. B 296 (1988) 49 [SPIRES].

    Article  ADS  Google Scholar 

  56. S. Catani, F. Fiorani and G. Marchesini, Small x Behavior of Initial State Radiation in Perturbative QCD, Nucl. Phys. B 336 (1990) 18 [SPIRES].

    Article  ADS  Google Scholar 

  57. B. Andersson, G. Gustafson and J. Samuelsson, The Linked dipole chain model for DIS, Nucl. Phys. B 467 (1996) 443 [SPIRES].

    Article  ADS  Google Scholar 

  58. B.R. Webber, Monte Carlo Simulation of Hard Hadronic Processes, Ann. Rev. Nucl. Part. Sci. 36 (1986) 253 [SPIRES].

    Article  ADS  Google Scholar 

  59. M. Bengtsson and P.M. Zerwas, Four Jet Events in e + e Annihilation: Testing the Three Gluon Vertex, Phys. Lett. B 208 (1988) 306 [SPIRES].

    ADS  Google Scholar 

  60. S. Platzer and S. Gieseke, Coherent Parton Showers with Local Recoils, JHEP 01 (2011) 024 [arXiv:0909.5593] [SPIRES].

    Article  ADS  Google Scholar 

  61. S. Hoeche, S. Schumann and F. Siegert, Hard photon production and matrix-element parton-shower merging, Phys. Rev. D 81 (2010) 034026 [arXiv:0912.3501] [SPIRES].

    ADS  Google Scholar 

  62. R. Kleiss, From two to three jets in heavy boson decays: an algorithmic approach, Phys. Lett. B 180 (1986) 400 [SPIRES].

    ADS  Google Scholar 

  63. G. Gustafson and A. Nilsson, Fractal structures and intermittency in perturbative QCD cascades, Nucl. Phys. B 355 (1991) 106 [SPIRES].

    Article  ADS  Google Scholar 

  64. A. Donnachie and P.V. Landshoff, Total cross-sections, Phys. Lett. B 296 (1992) 227 [hep-ph/9209205] [SPIRES].

    ADS  Google Scholar 

  65. G.A. Schuler and T. Sjöstrand, Hadronic diffractive cross-sections and the rise of the total cross-section, Phys. Rev. D 49 (1994) 2257 [SPIRES].

    ADS  Google Scholar 

  66. G.A. Schuler and T. Sjöstrand, A scenario for high-energy gamma gamma interactions, Z. Phys. C 73 (1997) 677 [hep-ph/9605240] [SPIRES].

    Google Scholar 

  67. K.A. Goulianos, Renormalization of hadronic diffraction and the structure of the Pomeron, Phys. Lett. B 358 (1995) 379 [hep-ph/9502356] [SPIRES].

    ADS  Google Scholar 

  68. K.A. Goulianos, Pomeron intercept and slope: A QCD connection, Phys. Rev. D 80 (2009) 111901 [SPIRES].

    ADS  Google Scholar 

  69. ATLAS collaboration, Studies of Diffractive Enhanced Minimum Bias Events in ATLAS, ATLAS-CONF-2010-048 (2010).

  70. CTEQ collaboration, H.L. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [SPIRES].

    Article  ADS  Google Scholar 

  71. M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches Accord PDFs (LHAPDF) and Lhaglue, hep-ph/0508110 [SPIRES].

  72. T. Kasemets and T. Sjöstrand, A Comparison of new MC-adapted Parton Densities, Eur. Phys. J. C 69 (2010) 19 [arXiv:1007.0897] [SPIRES].

    Article  ADS  Google Scholar 

  73. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].

    Article  ADS  Google Scholar 

  74. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].

    Article  ADS  Google Scholar 

  75. H.-L. Lai et al., Parton Distributions for Event Generators, JHEP 04 (2010) 035 [arXiv:0910.4183] [SPIRES].

    Article  ADS  Google Scholar 

  76. A. Sherstnev and R.S. Thorne, Parton Distributions for LO Generators, Eur. Phys. J. C 55 (2008) 553 [arXiv:0711.2473] [SPIRES].

    Article  ADS  Google Scholar 

  77. M. Sandhoff and P. Skands, Colour annealing - a toy model of colour reconnections, Presented at Les Houches Workshop on Physics at TeV Colliders, Les Houches, France, 2–20 May 2005.

  78. P.Z. Skands and D. Wicke, Non-perturbative QCD effects and the top mass at the Tevatron, Eur. Phys. J. C 52 (2007) 133 [hep-ph/0703081] [SPIRES].

    Article  ADS  Google Scholar 

  79. S. Navin, Diffraction in PYTHIA, arXiv:1005.3894 [SPIRES].

  80. G. Ingelman and P.E. Schlein, Jet Structure in High Mass Diffractive Scattering, Phys. Lett. B 152 (1985) 256 [SPIRES].

  81. W. Slominski and A. Valkarova, Diffractive final states and factorisation at HERA, DESY-PROC-2009-02.

  82. CDF collaboration, A.A. Affolder et al., Diffractive dijets with a leading antiproton in \( \bar{p}p \) collisions at \( \sqrt {s} = 1800\;GeV \), Phys. Rev. Lett. 84 (2000) 5043 [SPIRES].

    Article  ADS  Google Scholar 

  83. B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton Fragmentation and String Dynamics, Phys. Rept. 97 (1983) 31 [SPIRES].

    Article  ADS  Google Scholar 

  84. STAR collaboration, B.I. Abelev et al., Enhanced strange baryon production in Au+Au collisions compared to p+p at \( \sqrt {s} = 200\;GeV \), Phys. Rev. C 77 (2008) 044908 [arXiv:0705.2511] [SPIRES].

    ADS  Google Scholar 

  85. F.A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans and T.T. Wu, Single Bremsstrahlung Processes in Gauge Theories, Phys. Lett. B 103 (1981) 124 [SPIRES].

    ADS  Google Scholar 

  86. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].

    Article  ADS  Google Scholar 

  87. M.L. Mangano, M. Moretti and R. Pittau, Multijet matrix elements and shower evolution in hadronic collisions: \( Wb\bar{b} + n \) jets as a case study, Nucl. Phys. B 632 (2002) 343 [hep-ph/0108069] [SPIRES].

    Article  ADS  Google Scholar 

  88. F. Caravaglios, M.L. Mangano, M. Moretti and R. Pittau, A new approach to multi-jet calculations in hadron collisions, Nucl. Phys. B 539 (1999) 215 [hep-ph/9807570] [SPIRES].

    Article  ADS  Google Scholar 

  89. J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  90. CDF collaboration, F. Abe et al., Evidence for color coherence in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.8\;TeV \), Phys. Rev. D 50 (1994) 5562 [SPIRES].

    ADS  Google Scholar 

  91. D0 collaboration, B. Abbott et al., Color coherent radiation in multijet events from \( p\bar{p} \) collisions at \( \sqrt {s} = 1.8\;TeV \), Phys. Lett. B 414 (1997) 419 [hep-ex/9706012] [SPIRES].

    ADS  Google Scholar 

  92. A. Buckley et al., General-purpose event generators for LHC physics, arXiv:1101.2599 [SPIRES].

  93. CDF collaboration, A.A. Affolder et al., The transverse momentum and total cross section of e + e pairs in the Z boson region from \( p\bar{p} \) collisions at \( \sqrt {s} = 1.8\;TeV \), Phys. Rev. Lett. 84 (2000) 845 [hep-ex/0001021] [SPIRES].

    Article  ADS  Google Scholar 

  94. CDF collaboration, A.A. Affolder et al., Charged jet evolution and the underlying event in \( p\bar{p} \) collisions at 1.8 TeV, Phys. Rev. D 65 (2002) 092002 [SPIRES].

    ADS  Google Scholar 

  95. CDF collaboration, D.E. Acosta et al., Soft and hard interactions in \( p\bar{p} \) collisions at \( \sqrt {s} = 1800{ - }GeV \) and 630-GeV, Phys. Rev. D 65 (2002) 072005 [SPIRES].

    ADS  Google Scholar 

  96. D0 collaboration, V.M. Abazov et al., Measurement of dijet azimuthal decorrelations at central rapidities in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 94 (2005) 221801 [hep-ex/0409040] [SPIRES].

    Article  ADS  Google Scholar 

  97. CDF collaboration, R. Field, The Underlying Event and Comparisons with MC, First International Workshop on Multiple Partonic Interactions at the LHC, 2008.

  98. CDF collaboration, D. Kar and R. Field, Using Drell-Yan to Probe the Underlying Event in Run 2at CDF, CDF Note 9351 (2008).

  99. CDF collaboration, T. Aaltonen et al., Measurement of Particle Production and Inclusive Differential Cross sections in \( p\bar{p} \) Collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. D 79 (2009) 112005 [arXiv:0904.1098] [SPIRES].

    ADS  Google Scholar 

  100. ALICE collaboration, K. Aamodt et al., Charged-particle multiplicity measurement in proton-proton collisions at \( \sqrt {s} = 0.9 \) and 2.36 TeV with ALICE at LHC, Eur. Phys. J. C 68 (2010) 89 [arXiv:1004.3034] [SPIRES].

    Article  ADS  Google Scholar 

  101. ALICE collaboration, K. Aamodt et al., Charged-particle multiplicity measurement in proton-proton collisions at \( \sqrt {s} = 7\;TeV \) with ALICE at LHC, Eur. Phys. J. C 68 (2010) 345 [arXiv:1004.3514] [SPIRES].

    Article  ADS  Google Scholar 

  102. ATLAS collaboration, G. Aad et al., Charged-particle multiplicities in pp interactions at \( \sqrt {s} = 900\;GeV \) measured with the ATLAS detector at the LHC, Phys. Lett. B 688 (2010) 21 [arXiv:1003.3124] [SPIRES].

    ADS  Google Scholar 

  103. ATLAS collaboration, Charged particle multiplicities in pp interactions at \( \sqrt {s} = 7\;TeV \) measured with the ATLAS detector at the LHC, ATLAS-CONF-2010-024.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Corke.

Additional information

ArXiv ePrint: 1011.1759

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corke, R., Sjöstrand, T. Interleaved parton showers and tuning prospects. J. High Energ. Phys. 2011, 32 (2011). https://doi.org/10.1007/JHEP03(2011)032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)032

Keywords

Navigation