Skip to main content
Log in

Search for Higgs bosons of the universal extra dimensions at the large Hadron collider

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The Higgs sector of the Universal Extra Dimensions (UED) has a rather involved setup. With one extra space dimension, the main ingredients to the construct are the higher Kaluza-Klein (KK) excitations of the Standard Model Higgs boson and the fifth components of the gauge fields which on compactification appear as scalar degrees of freedom and can mix with the former thus leading to physical KK-Higgs states of the scenario. In this work, we explore in detail the phenomenology of such a Higgs sector of the UED with the Large Hadron Collider (LHC) in focus. We work out relevant decay branching fractions involving the KK-Higgs excitations. Possible production modes of the KK-Higgs bosons are then discussed with an emphasis on their associated production with the third generation KK-quarks and that under the cascade decays of strongly interacting UED excitations which turn out to be the only phenomenologically significant modes. It is pointed out that the collider searches of such Higgs bosons face generic hardship due to soft end-products which result from severe degeneracies in the masses of the involved excitations in the minimal version of the UED (MUED). Generic implications of either observing some or all of the KK-Higgs bosons at the LHC are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [SPIRES].

    ADS  Google Scholar 

  2. I. Antoniadis, A possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. T.G. Rizzo, Probes of universal extra dimensions at colliders, Phys. Rev. D 64 (2001) 095010 [hep-ph/0106336] [SPIRES].

    ADS  Google Scholar 

  4. C. Macesanu, C.D. McMullen and S. Nandi, Collider implications of universal extra dimensions, Phys. Rev. D 66 (2002) 015009 [hep-ph/0201300] [SPIRES].

    ADS  Google Scholar 

  5. H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [SPIRES].

    ADS  Google Scholar 

  6. M.S. Carena, T.M.P. Tait and C.E.M. Wagner, Branes and orbifolds are opaque, Acta Phys. Polon. B 33 (2002) 2355 [hep-ph/0207056] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. H.-C. Cheng, K.T. Matchev and M. Schmaltz, Bosonic supersymmetry? Getting fooled at the CERN LHC, Phys. Rev. D 66 (2002) 056006 [hep-ph/0205314] [SPIRES].

    ADS  Google Scholar 

  8. G. Bhattacharyya, P. Dey, A. Kundu and A. Raychaudhuri, Probing universal extra dimension at the international linear collider, Phys. Lett. B 628 (2005) 141 [hep-ph/0502031] [SPIRES].

    ADS  Google Scholar 

  9. M. Battaglia, A. Datta, A. De Roeck, K. Kong and K.T. Matchev, Contrasting supersymmetry and universal extra dimensions at the CLIC multi-TeV e + e collider, JHEP 07 (2005) 033 [hep-ph/0502041] [SPIRES].

    Article  ADS  Google Scholar 

  10. S. Riemann, Z’ signals from Kaluza-Klein dark matter, hep-ph/0508136 [SPIRES].

  11. B. Bhattacherjee and A. Kundu, The international linear collider as a Kaluza-Klein factory, Phys. Lett. B 627 (2005) 137 [hep-ph/0508170] [SPIRES].

    ADS  Google Scholar 

  12. A. Datta, K. Kong and K.T. Matchev, Discrimination of supersymmetry and universal extra dimensions at hadron colliders, Phys. Rev. D 72 (2005) 096006 [Erratum ibid. D 72 (2005) 119901] [hep-ph/0509246] [SPIRES].

    ADS  Google Scholar 

  13. C. Macesanu, The phenomenology of universal extra dimensions at hadron colliders, Int. J. Mod. Phys. A 21 (2006) 2259 [hep-ph/0510418] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. D. Hooper and S. Profumo, Dark matter and collider phenomenology of universal extra dimensions, Phys. Rept. 453 (2007) 29 [hep-ph/0701197] [SPIRES].

    Article  ADS  Google Scholar 

  15. B. Bhattacherjee, A. Kundu, S.K. Rai and S. Raychaudhuri, Universal extra dimensions, radiative returns and the inverse problem at a linear e + e collider, Phys. Rev. D 78 (2008) 115005 [arXiv:0805.3619] [SPIRES].

    ADS  Google Scholar 

  16. S. Matsumoto, J. Sato, M. Senami and M. Yamanaka, Productions of second Kaluza-Klein gauge bosons in the minimal universal extra dimension model at LHC, Phys. Rev. D 80 (2009) 056006 [arXiv:0903.3255] [SPIRES].

    ADS  Google Scholar 

  17. G. Bhattacharyya, A. Datta, S.K. Majee and A. Raychaudhuri, Exploring the universal extra dimension at the LHC, Nucl. Phys. B 821 (2009) 48 [arXiv:0904.0937] [SPIRES].

    Article  ADS  Google Scholar 

  18. K. Agashe, N.G. Deshpande and G.H. Wu, Universal extra dimensions and bsγ, Phys. Lett. B 514 (2001) 309 [hep-ph/0105084] [SPIRES].

    ADS  Google Scholar 

  19. K. Agashe, N.G. Deshpande and G.H. Wu, Can extra dimensions accessible to the SM explain the recent measurement of anomalous magnetic moment of the muon?, Phys. Lett. B 511 (2001) 85 [hep-ph/0103235] [SPIRES].

    ADS  Google Scholar 

  20. T. Appelquist and B.A. Dobrescu, Universal extra dimensions and the muon magnetic moment, Phys. Lett. B 516 (2001) 85 [hep-ph/0106140] [SPIRES].

    ADS  Google Scholar 

  21. D. Chakraverty, K. Huitu and A. Kundu, Effects of universal extra dimensions on \({B^0} - {\overline B^0}\) mixing, Phys. Lett. B 558 (2003) 173 [hep-ph/0212047] [SPIRES].

    ADS  Google Scholar 

  22. A.J. Buras, M. Spranger and A. Weiler, The impact of universal extra dimensions on the unitarity triangle and rare K and B decays, Nucl. Phys. B 660 (2003) 225 [hep-ph/0212143] [SPIRES].

    Article  ADS  Google Scholar 

  23. J.F. Oliver, J. Papavassiliou and A. Santamaria, Universal extra dimensions and \( Z \to b\overline b\), Phys. Rev. D 67 (2003) 056002 [hep-ph/0212391] [SPIRES].

    ADS  Google Scholar 

  24. A.J. Buras, A. Poschenrieder, M. Spranger and A. Weiler, The impact of universal extra dimensions on BX s γ, BX s gluon, BX s μ+μ , K L → π0 e + e and ϵ′/ϵ, Nucl. Phys. B 678 (2004) 455 [hep-ph/0306158] [SPIRES].

    Article  ADS  Google Scholar 

  25. S. Khalil and R. Mohapatra, Flavor violation and extra dimensions, Nucl. Phys. B 695 (2004) 313 [hep-ph/0402225] [SPIRES].

    Article  ADS  Google Scholar 

  26. P. Bucci and B. Grzadkowski, The effective potential and vacuum stability within universal extra dimensions, Phys. Rev. D 68 (2003) 124002 [hep-ph/0304121] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. P. Bucci, B. Grzadkowski, Z. Lalak and R. Matyszkiewicz, Electroweak symmetry breaking and radion stabilization in universal extra dimensions, JHEP 04 (2004) 067 [hep-ph/0403012] [SPIRES].

    Article  ADS  Google Scholar 

  28. I. Gogoladze and C. Macesanu, Precision electroweak constraints on universal extra dimensions revisited, Phys. Rev. D 74 (2006) 093012 [hep-ph/0605207] [SPIRES].

    ADS  Google Scholar 

  29. R. Mohanta and A.K. Giri, Study of FCNC mediated rare Bs decays in a single universal extra dimension scenario, Phys. Rev. D 75 (2007) 035008 [hep-ph/0611068] [SPIRES].

    ADS  Google Scholar 

  30. K.R. Dienes, E. Dudas and T. Gherghetta, Grand unification at intermediate mass scales through extra dimensions, Nucl. Phys. B 537 (1999) 47 [hep-ph/9806292] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. H.-C. Cheng, J.L. Feng and K.T. Matchev, Kaluza-Klein dark matter, Phys. Rev. Lett. 89 (2002) 211301 [hep-ph/0207125] [SPIRES].

    Article  ADS  Google Scholar 

  32. G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [SPIRES].

    Article  ADS  Google Scholar 

  33. G. Servant and T.M.P. Tait, Elastic scattering and direct detection of Kaluza-Klein dark matter, New J. Phys. 4 (2002) 99 [hep-ph/0209262] [SPIRES].

    Article  ADS  Google Scholar 

  34. D. Majumdar, Detection rates for Kaluza-Klein dark matter, Phys. Rev. D 67 (2003) 095010 [hep-ph/0209277] [SPIRES].

    ADS  Google Scholar 

  35. D. Majumdar, Relic densities for Kaluz-Klein dark matter, Mod. Phys. Lett. A 18 (2003) 1705 [SPIRES].

    ADS  Google Scholar 

  36. M. Kakizaki, S. Matsumoto, Y. Sato and M. Senami, Significant effects of second KK particles on LKP dark matter physics, Phys. Rev. D 71 (2005) 123522 [hep-ph/0502059] [SPIRES].

    ADS  Google Scholar 

  37. M. Kakizaki, S. Matsumoto, Y. Sato and M. Senami, Relic abundance of LKP dark matter in UED model including effects of second KK resonances, Nucl. Phys. B 735 (2006) 84 [hep-ph/0508283] [SPIRES].

    Article  ADS  Google Scholar 

  38. F. Burnell and G.D. Kribs, The abundance of Kaluza-Klein dark matter with coannihilation, Phys. Rev. D 73 (2006) 015001 [hep-ph/0509118] [SPIRES].

    ADS  Google Scholar 

  39. K. Kong and K.T. Matchev, Precise calculation of the relic density of Kaluza-Klein dark matter in universal extra dimensions, JHEP 01 (2006) 038 [hep-ph/0509119] [SPIRES].

    Article  ADS  Google Scholar 

  40. T. Flacke, D. Hooper and J. March-Russell, Improved bounds on universal extra dimensions and consequences for LKP dark matter, Phys. Rev. D 73 (2006) 095002 [Erratum ibid. D 74 (2006) 019902] [hep-ph/0509352] [SPIRES].

    ADS  Google Scholar 

  41. M. Kakizaki, S. Matsumoto and M. Senami, Relic abundance of dark matter in the minimal universal extra dimension model, Phys. Rev. D 74 (2006) 023504 [hep-ph/0605280] [SPIRES].

    ADS  Google Scholar 

  42. S.C. Park and J. Shu, Split-UED and dark matter, Phys. Rev. D 79 (2009) 091702 [arXiv:0901.0720] [SPIRES].

    ADS  Google Scholar 

  43. C.-R. Chen, M.M. Nojiri, S.C. Park, J. Shu and M. Takeuchi, Dark matter and collider phenomenology of split-UED, JHEP 09 (2009) 078 [arXiv:0903.1971] [SPIRES].

    Article  ADS  Google Scholar 

  44. C.-R. Chen, M.M. Nojiri, S.C. Park and J. Shu, Kaluza-Klein dark matter after Fermi, arXiv:0908.4317 [SPIRES].

  45. J.M. Smillie and B.R. Webber, Distinguishing spins in supersymmetric and universal extra dimension models at the large hadron collider, JHEP 10 (2005) 069 [hep-ph/0507170] [SPIRES].

    Article  ADS  Google Scholar 

  46. A. Datta, G.L. Kane and M. Toharia, Is it SUSY?, hep-ph/0510204 [SPIRES].

  47. N. Arkani-Hamed, G.L. Kane, J. Thaler and L.-T. Wang, Supersymmetry and the LHC inverse problem, JHEP 08 (2006) 070 [hep-ph/0512190] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. P. Meade and M. Reece, Top partners at the LHC: spin and mass measurement, Phys. Rev. D 74 (2006) 015010 [hep-ph/0601124] [SPIRES].

    ADS  Google Scholar 

  49. C. Athanasiou, C.G. Lester, J.M. Smillie and B.R. Webber, Distinguishing spins in decay chains at the Large Hadron Collider, JHEP 08 (2006) 055 [hep-ph/0605286] [SPIRES].

    Article  ADS  Google Scholar 

  50. L.-T. Wang and I. Yavin, Spin measurements in cascade decays at the LHC, JHEP 04 (2007) 032 [hep-ph/0605296] [SPIRES].

    Article  ADS  Google Scholar 

  51. C. Athanasiou, C.G. Lester, J.M. Smillie and B.R. Webber, Addendum to ’Distinguishing spins in decay chains at the Large Hadron Collider’, hep-ph/0606212 [SPIRES].

  52. D. Hooper and G. Zaharijas, Distinguishing supersymmetry from universal extra dimensions or little Higgs models with dark matter experiments, Phys. Rev. D 75 (2007) 035010 [hep-ph/0612137] [SPIRES].

    ADS  Google Scholar 

  53. S.Y. Choi, K. Hagiwara, H.U. Martyn, K. Mawatari and P.M. Zerwas, Spin analysis of supersymmetric particles, Eur. Phys. J. C 51 (2007) 753 [hep-ph/0612301] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. N. Arkani-Hamed et al., MARMOSET: the path from LHC data to the new Standard Model via on-shell effective theories, hep-ph/0703088 [SPIRES].

  55. L.-T. Wang and I. Yavin, A review of spin determination at the LHC, Int. J. Mod. Phys. A 23 (2008) 4647 [arXiv:0802.2726] [SPIRES].

    ADS  Google Scholar 

  56. J. Hubisz, J. Lykken, M. Pierini and M. Spiropulu, Missing energy look-alikes with 100 pb −1 at the LHC, Phys. Rev. D 78 (2008) 075008 [arXiv:0805.2398] [SPIRES].

    ADS  Google Scholar 

  57. A. Belyaev et al., Dictionary of LHC signatures, Pramana 72 (2009) 229 [arXiv:0806.2838] [SPIRES].

    Article  ADS  Google Scholar 

  58. M. Burns, K. Kong, K.T. Matchev and M. Park, A general method for model-independent measurements of particle spins, couplings and mixing angles in cascade decays with missing energy at Hadron Colliders, JHEP 10 (2008) 081 [arXiv:0808.2472] [SPIRES].

    Article  ADS  Google Scholar 

  59. G. Bélanger, E. Nezri and A. Pukhov, Discriminating dark matter candidates using direct detection, Phys. Rev. D 79 (2009) 015008 [arXiv:0810.1362] [SPIRES].

    ADS  Google Scholar 

  60. M. Burns, K.T. Matchev and M. Park, Using kinematic boundary lines for particle mass measurements and disambiguation in SUSY-like events with missing energy, JHEP 05 (2009) 094 [arXiv:0903.4371] [SPIRES].

    Article  ADS  Google Scholar 

  61. W. Ehrenfeld, A. Freitas, A. Landwehr and D. Wyler, Distinguishing spins in decay chains with photons at the Large Hadron Collider, JHEP 07 (2009) 056 [arXiv:0904.1293] [SPIRES].

    Article  ADS  Google Scholar 

  62. T. Appelquist and H.-U. Yee, Universal extra dimensions and the Higgs boson mass, Phys. Rev. D 67 (2003) 055002 [hep-ph/0211023] [SPIRES].

    ADS  Google Scholar 

  63. U. Haisch and A. Weiler, Bound on minimal universal extra dimensions from \(\overline B \to {X_s}\gamma \), Phys. Rev. D 76 (2007) 034014 [hep-ph/0703064] [SPIRES].

    ADS  Google Scholar 

  64. S. Matsumoto and M. Senami, Efficient coannihilation process through strong Higgs self-coupling in LKP dark matter annihilation, Phys. Lett. B 633 (2006) 671 [hep-ph/0512003] [SPIRES].

    ADS  Google Scholar 

  65. J.A.R. Cembranos, J.L. Feng and L.E. Strigari, Exotic collider signals from the complete phase diagram of minimal universal extra dimensions, Phys. Rev. D 75 (2007) 036004 [hep-ph/0612157] [SPIRES].

    ADS  Google Scholar 

  66. B. Bhattacherjee and A. Kundu, The excited scalars of the universal extra dimension model, J. Phys. G 32 (2006) 2123 [hep-ph/0605118] [SPIRES].

    ADS  Google Scholar 

  67. B. Bhattacherjee and A. Kundu, Production of Higgs boson excitations of universal extra dimension at the Large Hadron Collider, Phys. Lett. B 653 (2007) 300 [arXiv:0704.3340] [SPIRES].

    ADS  Google Scholar 

  68. F.J. Petriello, Kaluza-Klein effects on Higgs physics in universal extra dimensions, JHEP 05 (2002) 003 [hep-ph/0204067] [SPIRES].

    Article  ADS  Google Scholar 

  69. A. Datta and S.K. Rai, Identifying the contributions of universal extra dimensions in the Higgs sector at linear e + e colliders, Int. J. Mod. Phys. A 23 (2008) 519 [hep-ph/0509277] [SPIRES].

    ADS  Google Scholar 

  70. S.K. Rai, UED effects on Higgs signals at LHC, Int. J. Mod. Phys. A 23 (2008) 823 [hep-ph/0510339] [SPIRES].

    ADS  Google Scholar 

  71. K. Hsieh and C.P. Yuan, Lone Higgs at the LHC, Phys. Rev. D 78 (2008) 053006 [arXiv:0806.2608] [SPIRES].

    ADS  Google Scholar 

  72. A. Datta, K. Kong and K.T. Matchev, Minimal universal extra dimension in CalcHEP/CompHEP, http://home.fnal.gov/%7Ekckong/mued/.

  73. A. Pukhov, Calchep 2.3: MSSM, structure functions, event generation, 1 and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].

  74. M. ElKacimi, D. Goujdami, H. Przysiezniak and P.Z. Skands, One universal extra dimension in PYTHIA, Comput. Phys. Commun. 181 (2010) 122 [arXiv:0901.4087] [SPIRES].

    Article  ADS  Google Scholar 

  75. N.D. Christensen and C. Duhr, FeynRules - Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [SPIRES].

    Article  ADS  Google Scholar 

  76. LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].

    ADS  Google Scholar 

  77. M. Guchait and D.P. Roy, Using τ polarization for charged Higgs Boson and SUSY searches at LHC, arXiv:0808.0438 [SPIRES].

  78. CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: Physics performance, J. Phys. G 34 (2007) 995 [SPIRES].

    ADS  Google Scholar 

  79. K. Kawagoe and M.M. Nojiri, Discovery of supersymmetry with degenerated mass spectrum, Phys. Rev. D 74 (2006) 115011 [hep-ph/0606104] [SPIRES].

    ADS  Google Scholar 

  80. M.J. Strassler, Flesh and blood, or merely ghosts? Some comments on the multi-muon study at CDF, arXiv:0811.1560 [SPIRES].

  81. A. Datta, A. Djouadi, M. Guchait and Y. Mambrini, Charged Higgs production from SUSY particle cascade decays at the LHC, Phys. Rev. D 65 (2002) 015007 [hep-ph/0107271] [SPIRES].

    ADS  Google Scholar 

  82. A. Datta, A. Djouadi, M. Guchait and F. Moortgat, Detection of MSSM Higgs bosons from supersymmetric particle cascade decays at the LHC, Nucl. Phys. B 681 (2004) 31 [hep-ph/0303095] [SPIRES].

    Article  ADS  Google Scholar 

  83. Private communications with Graham Kribs and Kyoungchul Kong.

  84. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].

    Article  ADS  Google Scholar 

  85. T. Flacke, A. Menon and D.J. Phalen, Non-minimal universal extra dimensions, Phys. Rev. D 79 (2009) 056009 [arXiv:0811.1598] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyotosh Bandyopadhyay.

Additional information

ArXiv ePrint: 0909.3108

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, P., Bhattacherjee, B. & Datta, A. Search for Higgs bosons of the universal extra dimensions at the large Hadron collider. J. High Energ. Phys. 2010, 48 (2010). https://doi.org/10.1007/JHEP03(2010)048

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2010)048

Keywords

Navigation