Skip to main content
Log in

Four generations: SUSY and SUSY breaking

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We revisit four generations within the context of supersymmetry. We compute the perturbativity limits for the fourth generation Yukawa couplings and show that if the masses of the fourth generation lie within reasonable limits of their present experimental lower bounds, it is possible to have perturbativity only up to scales around 1000 TeV. Such low scales are ideally suited to incorporate gauge mediated supersymmetry breaking, where the mediation scale can be as low as 10-20 TeV. The minimal messenger model, however, is highly constrained. While lack of electroweak symmetry breaking rules out a large part of the parameter space, a small region exists, where the fourth generation stau is tachyonic. General gauge mediation with its broader set of boundary conditions is better suited to accommodate the fourth generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DØ collaboration, V.M. Abazov et al., Observation of Single Top-Quark Production, Phys. Rev. Lett. 103 (2009) 092001 [arXiv:0903.0850] [SPIRES].

    Article  ADS  Google Scholar 

  2. CDF collaboration, T. Aaltonen et al., First Observation of Electroweak Single Top Quark Production, Phys. Rev. Lett. 103 (2009) 092002 [arXiv:0903.0885] [SPIRES].

    Article  Google Scholar 

  3. J. Alwall et al., Is V(tb) = 1?, Eur. Phys. J. C 49 (2007) 791 [hep-ph/0607115] [SPIRES].

    Article  ADS  Google Scholar 

  4. G.D. Kribs, T. Plehn, M. Spannowsky and T.M.P. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [SPIRES].

    ADS  Google Scholar 

  5. M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, How much space is left for a new family of fermions?, Phys. Rev. D 79 (2009) 113006 [arXiv:0902.4883] [SPIRES].

    ADS  Google Scholar 

  6. M.S. Chanowitz, Bounding CKM Mixing with a Fourth Family, Phys. Rev. D 79 (2009) 113008 [arXiv:0904.3570] [SPIRES].

    ADS  Google Scholar 

  7. B. Holdom et al., Four Statements about the Fourth Generation, PMC Phys. A 3 (2009) 4 [arXiv:0904.4698] [SPIRES].

    Article  Google Scholar 

  8. V.A. Novikov, A.N. Rozanov and M.I. Vysotsky, Once more on extra quark-lepton generations and precision measurements, arXiv:0904.4570 [SPIRES].

  9. P.Q. Hung and M. Sher, Experimental constraints on fourth generation quark masses, Phys. Rev. D 77 (2008) 037302 [arXiv:0711.4353] [SPIRES].

    ADS  Google Scholar 

  10. P.H. Frampton, P.Q. Hung and M. Sher, Quarks and leptons beyond the third generation, Phys. Rept. 330 (2000) 263 [hep-ph/9903387] [SPIRES].

    Article  ADS  Google Scholar 

  11. H.B. Nielsen, A.V. Novikov, V.A. Novikov and M.I. Vysotsky, Higgs potential bounds on extra quark - lepton generations, Phys. Lett. B 374 (1996) 127 [hep-ph/9511340] [SPIRES].

    ADS  Google Scholar 

  12. Y.F. Pirogov and O.V. Zenin, Two-loop renormalization group restrictions on the standard model and the fourth chiral family, Eur. Phys. J. C 10 (1999) 629 [hep-ph/9808396] [SPIRES].

    Article  ADS  Google Scholar 

  13. H. Goldberg, The fourth generation and N = 1 supergravity, Phys. Lett. B 165 (1985) 292 [SPIRES].

    ADS  Google Scholar 

  14. K. Enqvist, D.V. Nanopoulos and F. Zwirner, The fourth generation in supergravity, Phys. Lett. B 164 (1985) 321 [SPIRES].

    ADS  Google Scholar 

  15. R.L. Arnowitt and P. Nath, Fourth generation and nucleon decay in supersymmetric theories, Phys. Rev. D 36 (1987) 3423 [SPIRES].

    ADS  Google Scholar 

  16. M. Drees, K. Enqvist and D.V. Nanopoulos, No future for the fourth generation?, Nucl. Phys. B 294 (1987) 1 [SPIRES].

    Article  ADS  Google Scholar 

  17. J.F. Gunion, D.W. McKay and H. Pois, Gauge coupling unification and the minimal SUSY model: a Fourth generation below the top?, Phys. Lett. B 334 (1994) 339 [hep-ph/9406249] [SPIRES].

    ADS  Google Scholar 

  18. J.F. Gunion, D.W. McKay and H. Pois, A Minimal four family supergravity model, Phys. Rev. D 53 (1996) 1616 [hep-ph/9507323] [SPIRES].

    ADS  Google Scholar 

  19. J.E. Dubicki and C.D. Froggatt, Supersymmetric grand unification with a fourth generation?, Phys. Lett. B 567 (2003) 46 [hep-ph/0305007] [SPIRES].

    ADS  Google Scholar 

  20. Z. Murdock, S. Nandi and Z. Tavartkiladze, Perturbativity and a Fourth Generation in the MSSM, Phys. Lett. B 668 (2008) 303 [arXiv:0806.2064] [SPIRES].

    ADS  Google Scholar 

  21. T.Ibrahim and P.Nath, An MSSM Extension with a Mirror Fourth Generation, Neutrino Magnetic Moments and LHC Signatures, Phys. Rev. D 78 (2008) 075013 [arXiv:0806.3880] [SPIRES].

    ADS  Google Scholar 

  22. P.Q. Hung, Minimal SU(5) resuscitated by long-lived quarks and leptons, Phys. Rev. Lett. 80 (1998) 3000 [hep-ph/9712338] [SPIRES].

    Article  ADS  Google Scholar 

  23. W.-S. Hou, CP Violation and Baryogenesis from New Heavy Quarks, Chin. J. Phys. 47 (2009) 134 [arXiv:0803.1234] [SPIRES].

    Google Scholar 

  24. R. Fok and G.D. Kribs, Four Generations, the Electroweak Phase Transition and Supersymmetry, Phys. Rev. D 78 (2008) 075023 [arXiv:0803.4207] [SPIRES].

    ADS  Google Scholar 

  25. Y. Kikukawa, M. Kohda and J. Yasuda, The strongly coupled fourth family and a first-order electroweak phase transition (I) quark sector, Prog. Theor. Phys. 122 (2009) 401 [arXiv:0901.1962] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  26. S.P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, arXiv:0910.2732 [SPIRES].

  27. P.W. Graham, A. Ismail, S. Rajendran and P. Saraswat, A Little Solution to the Little Hierarchy Problem: A Vector-like Generation, arXiv:0910.3020 [SPIRES].

  28. E. De Pree, G. Marshall and M. Sher, The Fourth Generation t-prime in Extensions of the Standard Model, Phys. Rev. D 80 (2009) 037301 [arXiv:0906.4500] [SPIRES].

    ADS  Google Scholar 

  29. G. Burdman and L. Da Rold, Electroweak Symmetry Breaking from a Holographic Fourth Generation, JHEP 12 (2007) 086 [arXiv:0710.0623] [SPIRES].

    Article  ADS  Google Scholar 

  30. A. Borstnik Bracic, M. Breskvar, D. Lukman and N.S. Mankoc Borstnik, A new understanding of fermion masses from the unified theory of spins and charges, hep-ph/0606224 [SPIRES].

  31. A. Borstnik Bracic, M. Breskvar, D. Lukman and N.S. Mankoc Borstnik, A new understanding of fermion masses from the unified theory of spins and charges, hep-ph/0606224 [SPIRES].

    ADS  Google Scholar 

  32. M.T. Frandsen, I. Masina and F. Sannino, Fourth Lepton Family is Natural in Technicolor, arXiv:0905.1331 [SPIRES].

  33. O. Antipin, M. Heikinheimo and K. Tuominen, Natural fourth generation of leptons, JHEP 10 (2009) 018 [arXiv:0905.0622] [SPIRES].

    Article  Google Scholar 

  34. B. Holdom, Heavy quarks and electroweak symmetry breaking, Phys. Rev. Lett. 57 (1986) 2496 [SPIRES].

    Article  ADS  Google Scholar 

  35. C.T. Hill, M.A. Luty and E.A. Paschos, Electroweak symmetry breaking by fourth generation condensates and the neutrino spectrum, Phys. Rev. D 43 (1991) 3011 [SPIRES].

    ADS  Google Scholar 

  36. S.F. King, Is electroweak symmetry broken by a fourth family of quarks?, Phys. Lett. B 234 (1990) 108 [SPIRES].

    ADS  Google Scholar 

  37. G. Kramer and I. Montvay, Radiative Quark Mass Generation And A Fourth Quark Family, Z. Phys. C 11 (1981) 159[SPIRES].

    ADS  Google Scholar 

  38. A.L. Kagan, Radiative quark mass and mixing hierarchies from supersymmetric models with a fourth mirror family, Phys. Rev. D 40 (1989) 173 [SPIRES].

    ADS  Google Scholar 

  39. M. Sher and Y. Yuan, Cosmological bounds on the lifetime of a fourth generation charged lepton, Phys. Lett. B 285 (1992) 336 [SPIRES].

    ADS  Google Scholar 

  40. H. Fritzsch, Light neutrinos, nonuniversality of the leptonic weak interaction and a fourth massive generation, Phys. Lett. B 289 (1992) 92 [SPIRES].

    ADS  Google Scholar 

  41. C.T. Hill and E.A. Paschos, A Naturally Heavy Fourth Generation Neutrino, Phys. Lett. B 241 (1990) 96 [SPIRES].

    ADS  Google Scholar 

  42. S.F. King, A Minimal four family model, Phys. Lett. B 281 (1992) 295 [SPIRES].

    ADS  Google Scholar 

  43. K.S. Babu, S. Nandi and Z. Tavartkiladze, New Mechanism for Neutrino Mass Generation and Triply Charged Higgs Bosons at the LHC, Phys. Rev. D 80 (2009) 071702 [arXiv:0905.2710] [SPIRES].

    Google Scholar 

  44. M. Drees, K. Enqvist and D.V. Nanopoulos, The fourth generation in superstring models, Phys. Lett. B 189 (1987) 321 [SPIRES].

    ADS  Google Scholar 

  45. B.C. Allanach, SOFTSUSY: A C++ program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  46. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  47. CDF collaboration, T. Aaltonen et al., Search for Heavy Top-like Quarks Using Lepton Plus Jets Events in 1.96 TeV XXX Collisions, Phys. Rev. Lett. 100 (2008) 161803 [arXiv:0801.3877] [SPIRES].

    Article  ADS  Google Scholar 

  48. DØ collaboration, S. Abachi et al., Top quark search with the DØ 1992 - 1993 data sample, Phys. Rev. D 52 (1995) 4877 [SPIRES].

    ADS  Google Scholar 

  49. CDF collaboration, T. Aaltonen et al., Search for New Particles Leading to Z+ jets Final States in XXX Collisions at XXX, Phys. Rev. D 76 (2007) 072006 [arXiv:0706.3264] [SPIRES].

    ADS  Google Scholar 

  50. CDF collaboration, D.E. Acosta et al., Search for long-lived charged massive particles in XXX collisions at XXX, Phys. Rev. Lett. 90 (2003) 131801 [hep-ex/0211064] [SPIRES].

    Article  ADS  Google Scholar 

  51. L3 collaboration, P. Achard et al., Search for heavy neutral and charged leptons in e + e annihilation at LEP, Phys. Lett. B 517 (2001) 75 [hep-ex/0107015] [SPIRES].

    ADS  Google Scholar 

  52. DELPHI collaboration, P. Abreu et al., Searches for heavy neutrinos from Z decays, Phys. Lett. B 274 (1992) 230 [SPIRES].

    ADS  Google Scholar 

  53. R. Rattazzi and U. Sarid, The Unified minimal supersymmetric model with large Yukawa couplings, Phys. Rev. D 53 (1996) 1553 [hep-ph/9505428] [SPIRES].

    ADS  Google Scholar 

  54. B. Ananthanarayan, G. Lazarides and Q. Shafi, Top mass prediction from supersymmetric GUTs, Phys. Rev. D 44 (1991) 1613 [SPIRES].

    ADS  Google Scholar 

  55. S. Litsey and M. Sher, Higgs Masses in the Four Generation MSSM, Phys. Rev. D 80 (2009) 057701 [arXiv:0908.0502] [SPIRES].

    Google Scholar 

  56. G.F. Giudice and R. Rattazzi, Theories with gauge-mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [SPIRES].

    Article  ADS  Google Scholar 

  57. M. Drees, R. Godbole, and P. Roy, Theory and phenomenology of sparticles: An account of four-dimensional N=1 supersymmetry in high energy physics, World Scientific Publishing, Hackensack U.S.A. (2004).

    Google Scholar 

  58. F. Borzumati, On the minimal messenger model, hep-ph/9702307 [SPIRES].

  59. P. Meade, N. Seiberg and D. Shih, General Gauge Mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  60. S. Abel, M.J. Dolan, J. Jaeckel and V.V. Khoze, Phenomenology of Pure General Gauge Mediation, JHEP 12 (2009) 001 [arXiv:0910.2674] [SPIRES].

    Article  Google Scholar 

  61. M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83 [SPIRES].

    Article  ADS  Google Scholar 

  62. M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221 [SPIRES].

    Article  ADS  Google Scholar 

  63. N.K. Falck, Renormalization Group Equations for Softly Broken Supersymmetry: The Most General Case, Z. Phys. C 30 (1986) 247 [SPIRES].

    ADS  Google Scholar 

  64. J.E. Bjorkman and D.R.T. Jones, The unification mass, sin2 θ w and m b /m τ in nonminimal supersymmetric SU(5), Nucl. Phys. B 259 (1985) 533 [SPIRES].

    Article  ADS  Google Scholar 

  65. J. Bagger, S. Dimopoulos and E. Masso, Renormalization group constraints in supersymmetric theories, Phys. Rev. Lett. 55 (1985) 920 [SPIRES].

    Article  ADS  Google Scholar 

  66. M. Cvetič and C.R. Preitschopf, Heavy families and N = 1 supergravity within the standard model, Nucl. Phys. B 272 (1986) 490 [SPIRES].

    Article  ADS  Google Scholar 

  67. M. Tanimoto, Y. Suetake and K. Senba, Fritzsch mass matrix with the fourth generation and the renormalization group equations, Phys. Rev. D 36 (1987) 2119 [SPIRES].

    ADS  Google Scholar 

  68. D.J. Castano, E.J. Piard and P. Ramond, Renormalization group study of the Standard Model and its extensions. 2. The Minimal supersymmetric Standard Model, Phys. Rev. D 49 (1994) 4882 [hep-ph/9308335] [SPIRES].

    ADS  Google Scholar 

  69. L.E. Ibáñez and C. Lopez, N = 1 Supergravity, the Weak Scale and the Low-Energy Particle Spectrum, Nucl. Phys. B 233 (1984) 511 [SPIRES].

    Article  ADS  Google Scholar 

  70. R. Brun and F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81 [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohini M. Godbole.

Additional information

ArXiv ePrint: 0911.1882

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godbole, R.M., Vempati, S.K. & Wingerter, A. Four generations: SUSY and SUSY breaking. J. High Energ. Phys. 2010, 23 (2010). https://doi.org/10.1007/JHEP03(2010)023

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2010)023

Keywords

Navigation