Skip to main content
Log in

Semi-local quantum criticality in string/M-theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Semi-local quantum critical behaviour in D − 1 spacetime dimensions can be holographically described by metrics that are conformal to \( Ad{S_2}\times {{\mathbb{R}}^{D-2 }} \), with the conformal factor characterised by a parameter η. We analyse such “η-geometries” in a top-down setting by focussing on the U(1)4 truncation of D = 4 N = 8 gauged supergravity. The model has extremal black hole solutions carrying three non-zero electric or magnetic charges which approach AdS 4 in the UV and an η = 1 geometry in the IR. Adding a fourth charge provides a mechanism to resolve the singularity of the η-geometry, replacing it with an \( Ad{S_2}\times {{\mathbb{R}}^2} \) factor in the IR, while maintaining a large region where the η-geometry scaling is approximately valid. Some of the magnetically charged black hole solutions preserve supersymmetry while others just preserve it in the IR. Finally, we show that η-geometries, with various values of η, can be obtained from the dimensional reduction of geometries consisting of AdS or Lifshitz geometries with flat directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Iqbal, H. Liu and M. Mezei, Semi-local quantum liquids, JHEP 04 (2012) 086 [arXiv:1105.4621] [INSPIRE].

    Article  ADS  Google Scholar 

  2. S.-S. Lee, A non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009)086006 [arXiv:0809.3402] [INSPIRE].

    ADS  Google Scholar 

  3. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011)065029 [arXiv:0903.2477] [INSPIRE].

    ADS  Google Scholar 

  4. M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].

    ADS  Google Scholar 

  6. J.P. Gauntlett, J. Sonner and D. Waldram, Universal fermionic spectral functions from string theory, Phys. Rev. Lett. 107 (2011) 241601 [arXiv:1106.4694] [INSPIRE].

    Article  ADS  Google Scholar 

  7. R. Belliard, S.S. Gubser and A. Yarom, Absence of a Fermi surface in classical minimal four-dimensional gauged supergravity, JHEP 10 (2011) 055 [arXiv:1106.6030] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. J.P. Gauntlett, J. Sonner and D. Waldram, Spectral function of the supersymmetry current, JHEP 11 (2011) 153 [arXiv:1108.1205] [INSPIRE].

    Article  ADS  Google Scholar 

  9. O. DeWolfe, S.S. Gubser and C. Rosen, Fermi surfaces in maximal gauged supergravity, Phys. Rev. Lett. 108 (2012) 251601 [arXiv:1112.3036] [INSPIRE].

    Article  ADS  Google Scholar 

  10. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008)065034 [arXiv:0801.2977] [INSPIRE].

    ADS  Google Scholar 

  11. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008)015 [arXiv:0810.1563] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009)126008 [arXiv:0901.1160] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. S.S. Gubser, S.S. Pufu and F.D. Rocha, Quantum critical superconductors in string theory and M-theory, Phys. Lett. B 683 (2010) 201 [arXiv:0908.0011] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett. 101 (2008)191601 [arXiv:0803.3483] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. M.M. Roberts and S.A. Hartnoll, Pseudogap and time reversal breaking in a holographic superconductor, JHEP 08 (2008) 035 [arXiv:0805.3898] [INSPIRE].

    Article  ADS  Google Scholar 

  18. F. Aprile, D. Rodriguez-Gomez and J.G. Russo, p-wave holographic superconductors and five-dimensional gauged supergravity, JHEP 01 (2011) 056 [arXiv:1011.2172] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. F. Benini, C.P. Herzog and A. Yarom, Holographic Fermi arcs and a d-wave gap, Phys. Lett. B 701 (2011) 626 [arXiv:1006.0731] [INSPIRE].

    ADS  Google Scholar 

  20. S. Nakamura, H. Ooguri and C.-S. Park, Gravity dual of spatially modulated phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].

    ADS  Google Scholar 

  21. A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Donos and J.P. Gauntlett, Holographic helical superconductors, JHEP 12 (2011) 091 [arXiv:1109.3866] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Donos and J.P. Gauntlett, Supersymmetric quantum criticality supported by baryonic charges, JHEP 10 (2012) 120 [arXiv:1208.1494] [INSPIRE].

    Article  ADS  Google Scholar 

  24. S.A. Hartnoll and E. Shaghoulian, Spectral weight in holographic scaling geometries, JHEP 07 (2012) 078 [arXiv:1203.4236] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].

    Article  ADS  Google Scholar 

  26. N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi surfaces and entanglement entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].

    ADS  Google Scholar 

  28. S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010 ) 046001 [arXiv:0911.2898] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].

    Article  ADS  Google Scholar 

  30. B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].

    Article  ADS  Google Scholar 

  31. O. DeWolfe, S.S. Gubser and C. Rosen, Fermi surfaces in N = 4 super-Yang-Mills theory, Phys. Rev. D 86 (2012) 106002 [arXiv:1207.3352] [INSPIRE].

    ADS  Google Scholar 

  32. M. Alishahiha, M.R.M. Mozaffar and A. Mollabashi, Holographic aspects of two-charged dilatonic black hole in AdS 5, JHEP 10 (2012) 003 [arXiv:1208.2535] [INSPIRE].

    Article  ADS  Google Scholar 

  33. R.J. Anantua, S.A. Hartnoll, V.L. Martin and D.M. Ramirez, The Pauli exclusion principle at strong coupling: holographic matter and momentum space, arXiv:1210.1590 [INSPIRE].

  34. M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].

    Article  ADS  Google Scholar 

  35. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. S. Harrison, S. Kachru and H. Wang, Resolving Lifshitz horizons, arXiv:1202.6635 [INSPIRE].

  37. J. Bhattacharya, S. Cremonini and A. Sinkovics, On the IR completion of geometries with hyperscaling violation, JHEP 02 (2013) 147 [arXiv:1208.1752] [INSPIRE].

    Article  Google Scholar 

  38. N. Kundu, P. Narayan, N. Sircar and S.P. Trivedi, Entangled dilaton dyons, arXiv:1208.2008 [INSPIRE].

  39. N. Bao, X. Dong, S. Harrison and E. Silverstein, The benefits of stress: resolution of the Lifshitz singularity, Phys. Rev. D 86 (2012) 106008 [arXiv:1207.0171] [INSPIRE].

    ADS  Google Scholar 

  40. S.S. Gubser and I. Mitra, The evolution of unstable black holes in anti-de Sitter space, JHEP 08 (2001) 018 [hep-th/0011127] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. A. Donos, J.P. Gauntlett and C. Pantelidou, Magnetic and electric AdS solutions in string-and M-theory, Class. Quant. Grav. 29 (2012) 194006 [arXiv:1112.4195] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Almheiri, Magnetic AdS 2 × R 2 at weak and strong coupling, arXiv:1112.4820 [INSPIRE].

  43. A. Almuhairi and J. Polchinski, Magnetic AdS × R 2 : supersymmetry and stability, arXiv:1108.1213 [INSPIRE].

  44. M. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys. B 554 (1999)237 [hep-th/9901149] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. N. Warner, Some new extrema of the scalar potential of gauged N = 8 supergravity, Phys. Lett. B 128 (1983) 169 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  46. N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Supergravity instabilities of non-supersymmetric quantum critical points, Class. Quant. Grav. 27 (2010) 235013 [arXiv:1006.2546] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. A. Donos and J.P. Gauntlett, Superfluid black branes in AdS 4 × S 7, JHEP 06 (2011) 053 [arXiv:1104.4478] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. S.S. Gubser and I. Mitra, Instability of charged black holes in Anti-de Sitter space, hep-th/0009126 [INSPIRE].

  49. J.P. Gauntlett, E. O Colgain and O. Varela, Properties of some conformal field theories with M-theory duals, JHEP 02 (2007) 049 [hep-th/0611219] [INSPIRE].

    Article  ADS  Google Scholar 

  50. J.P. Gauntlett and O. Varela, Consistent Kaluza-Klein reductions for general supersymmetric AdS solutions, Phys. Rev. D 76 (2007) 126007 [arXiv:0707.2315] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. J.P. Gauntlett and O. Varela, D = 5 SU(2) × U(1) gauged supergravity from D = 11 supergravity, JHEP 02 (2008) 083 [arXiv:0712.3560] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. B. Gouteraux, J. Smolic, M. Smolic, K. Skenderis and M. Taylor, Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction, JHEP 01 (2012) 089 [arXiv:1110.2320] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome P. Gauntlett.

Additional information

ArXiv ePrint: 1212.1462

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donos, A., Gauntlett, J.P. & Pantelidou, C. Semi-local quantum criticality in string/M-theory. J. High Energ. Phys. 2013, 103 (2013). https://doi.org/10.1007/JHEP03(2013)103

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)103

Keywords

Navigation