Skip to main content
Log in

Light states in Chern-Simons theory coupled to fundamental matter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Motivated by developments in vectorlike holography, we study SU(N) Chern-Simons theory coupled to matter fields in the fundamental representation on various spatial manifolds. On the spatial torus T 2, we find light states at small ‘t Hooft coupling λ = N/k, where k is the Chern-Simons level, taken to be large. In the free scalar theory the gaps are of order \( \sqrt{\lambda }/N \) and in the critical scalar theory and the free fermion theory they are of order λ/N. The entropy of these states grows like N log(k). We briefly consider spatial surfaces of higher genus. Based on results from pure Chern-Simons theory, it appears that there are light states with entropy that grows even faster, like N 2 log(k). This is consistent with the log of the partition function on the three sphere S 3, which also behaves like N 2 log(k). These light states require bulk dynamics beyond standard Vasiliev higher spin gravity to explain them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Klebanov and A. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. A.C. Petkou, Evaluating the AdS dual of the critical O(N) vector model, JHEP 03 (2003) 049 [hep-th/0302063] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. L. Girardello, M. Porrati and A. Zaffaroni, 3 − D interacting CFTs and generalized Higgs phenomenon in higher spin theories on AdS, Phys. Lett. B 561 (2003) 289 [hep-th/0212181] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: the Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. S.R. Das and A. Jevicki, Large-N collective fields and holography, Phys. Rev. D 68 (2003) 044011 [hep-th/0304093] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. R. de Mello Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4 /CF T 3 Construction from Collective Fields, Phys. Rev. D 83 (2011) 025006 [arXiv:1008.0633] [INSPIRE].

    ADS  Google Scholar 

  10. M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, Phys. Rev. D 83 (2011) 071701 [arXiv:1011.4926] [INSPIRE].

    ADS  Google Scholar 

  11. S. Giombi and X. Yin, On Higher Spin Gauge Theory and the Critical O(N) Model, Phys. Rev. D 85 (2012) 086005 [arXiv:1105.4011] [INSPIRE].

    ADS  Google Scholar 

  12. S.H. Shenker and X. Yin, Vector Models in the Singlet Sector at Finite Temperature, arXiv:1109.3519 [INSPIRE].

  13. S. Giombi et al., Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].

    ADS  Google Scholar 

  14. O. Aharony, G. Gur-Ari and R. Yacoby, D = 3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, arXiv:1204.3882 [INSPIRE].

  16. J. Maldacena and A. Zhiboedov, Constraining Conformal Field Theories with A Higher Spin Symmetry, arXiv:1112.1016 [INSPIRE].

  17. M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. M.A. Vasiliev, Higher spin gauge theories: star product and AdS space, hep-th/9910096 [INSPIRE].

  20. M. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. E. Sezgin and P. Sundell, Analysis of higher spin field equations in four-dimensions, JHEP 07 (2002) 055 [hep-th/0205132] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. D. Anninos, T. Hartman and A. Strominger, Higher Spin Realization of the dS/CFT Correspondence, arXiv:1108.5735 [INSPIRE].

  23. M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  24. M.R. Gaberdiel and T. Hartman, Symmetries of Holographic Minimal Models, JHEP 05 (2011) 031 [arXiv:1101.2910] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. M.R. Gaberdiel and C. Vollenweider, Minimal Model Holography for SO(2N), JHEP 08 (2011) 104 [arXiv:1106.2634] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. C. Ahn, The Large-Nt Hooft Limit of Coset Minimal Models, JHEP 10 (2011) 125 [arXiv:1106.0351] [INSPIRE].

    Article  ADS  Google Scholar 

  27. C.-M. Chang and X. Yin, Higher Spin Gravity with Matter in AdS 3 and Its CFT Dual, JHEP 10 (2012) 024 [arXiv:1106.2580] [INSPIRE].

    Article  ADS  Google Scholar 

  28. K. Papadodimas and S. Raju, Correlation Functions in Holographic Minimal Models, Nucl. Phys. B 856 (2012) 607 [arXiv:1108.3077] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition Functions of Holographic Minimal Models, JHEP 08 (2011) 077 [arXiv:1106.1897] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. M.R. Gaberdiel and P. Suchanek, Limits of Minimal Models and Continuous Orbifolds, JHEP 03 (2012) 104 [arXiv:1112.1708] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. S. Axelrod and I. Singer, Chern-Simons perturbation theory, hep-th/9110056 [INSPIRE].

  33. S. Axelrod and I. Singer, Chern-Simons perturbation theory. 2., J. Diff. Geom. 39 (1994) 173 [hep-th/9304087] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  34. S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the Canonical Quantization of the Chern-Simons-Witten Theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. X. Wen and Q. Niu, Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces, Phys. Rev. B 41 (1990) 9377 [INSPIRE].

    ADS  Google Scholar 

  36. S. Gukov, E. Martinec, G.W. Moore and A. Strominger, Chern-Simons gauge theory and the AdS 3 /CF T 2 correspondence, hep-th/0403225 [INSPIRE].

  37. M. Lüscher, Some Analytic Results Concerning the Mass Spectrum of Yang-Mills Gauge Theories on a Torus, Nucl. Phys. B 219 (1983) 233 [INSPIRE].

    Article  ADS  Google Scholar 

  38. M.R. Douglas, Chern-Simons-Witten theory as a topological Fermi liquid, hep-th/9403119 [INSPIRE].

  39. O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena and R. Yacoby, The Thermal Free Energy in Large-N Chern-Simons-Matter Theories, arXiv:1211.4843 [INSPIRE].

  40. L.D. Landau and E.M. Lifshitz, Quantum Mechanics: Non-relativistic theory, in Course of Theoretical Physics. Volume 3, Pergamon Press, Oxford, New York, third ed. (1989).

  41. J.J. Sakurai, Modern Quantum Mechanics, rev. ed., Addison-Wesley, Reading, MA, U.S.A. (1994).

  42. N. Wheeler, Higher-order spectral perturbation, Physics (September 2000) 1.

  43. E. Brézin, C. Itzykson, G. Parisi and J. Zuber, Planar Diagrams, Commun. Math. Phys. 59 (1978) 35 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. E. Witten, Supersymmetric index of three-dimensional gauge theory (1999) IASSNS-HEP-99-20 [hep-th/9903005].

  45. X. Yin, Vasiliev theory as a string theory, talk given at KITP Program on Bits, Branes and Black Holes, May 2012 http://online.kitp.ucsb.edu/online/bitbranes_c12/yin/pdf/Yin_BitBranes12Conf KITP.pdf.

  46. S. Giombi, Higher spin theories, holography, and chern-simons vector models, talk given at CQUeST Spring Workshop on Higher Spins and String Geometry, March 2012 [http://cquest.sogang.ac.kr/design/default/talk/31_17.pdf].

  47. C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, to appear.

  48. E. Verlinde, Conference Presentation, in proceedings of the Conference at Schloss Ringberg, April 1989.

  49. G.W. Moore and N. Seiberg, Lectures on RCFT, NATO ASI Series 238 (1990) 263.

  50. J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017 [hep-th/9903224] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. E. Witten and S.-T. Yau, Connectedness of the boundary in the AdS/CFT correspondence, Adv. Theor. Math. Phys. 3 (1999) 1635 [hep-th/9910245] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  53. V. Kac and M. Wakimoto, Modular and conformal invariance constraints in representation theory of affine algebras, Adv. Math. 70 (1988) 156 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  54. I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-Theorem without Supersymmetry, JHEP 10 (2011) 038 [arXiv:1105.4598] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].

    Article  ADS  Google Scholar 

  56. D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact Terms, Unitarity and F-Maximization in Three-Dimensional Superconformal Theories, JHEP 10 (2012) 053 [arXiv:1205.4142] [INSPIRE].

    Article  ADS  Google Scholar 

  58. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. A. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  60. J.L. Cardy, Is There a c Theorem in Four-Dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  61. Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four Dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. J.D. Bekenstein, A Universal Upper Bound on the Entropy to Energy Ratio for Bounded Systems, Phys. Rev. D 23 (1981) 287 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  65. N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. R. Emparan, AdS/CFT duals of topological black holes and the entropy of zero energy states, JHEP 06 (1999) 036 [hep-th/9906040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. G. Horowitz, A. Lawrence and E. Silverstein, Insightful D-branes, JHEP 07 (2009) 057 [arXiv:0904.3922] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].

    ADS  Google Scholar 

  69. J. McGreevy, E. Silverstein and D. Starr, New dimensions for wound strings: the Modular transformation of geometry to topology, Phys. Rev. D 75 (2007) 044025 [hep-th/0612121] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  70. J. Milnor, A note on curvature and fundamental group, J. Differ. Geom. 2 (1968) 1.

    MathSciNet  MATH  Google Scholar 

  71. G.A. Margulis, Certain applications of ergodic theory to the investigation of manifolds of negative curvature, Funkcional. Anal. i Priložen. 3 (1969) 89.

    MathSciNet  Google Scholar 

  72. R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415 [hep-th/9811131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  73. S. Hellerman, Channel Covariance in Higher-Dimensional Quantum Field Theory, talk given at Back to the Bootstrap, Perimeter Institute, Waterloo, U.S.A., April 2011.

  74. A. Castro, R. Gopakumar, M. Gutperle and J. Raeymaekers, Conical Defects in Higher Spin Theories, JHEP 02 (2012) 096 [arXiv:1111.3381] [INSPIRE].

    ADS  Google Scholar 

  75. M.R. Gaberdiel and R. Gopakumar, Triality in Minimal Model Holography, JHEP 07 (2012) 127 [arXiv:1205.2472] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  76. J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

    Article  ADS  Google Scholar 

  77. J.H. Schwarz, Superconformal Chern-Simons theories, JHEP 11 (2004) 078 [hep-th/0411077] [INSPIRE].

    Article  ADS  Google Scholar 

  78. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. M. Barkeshli and J. McGreevy, A continuous transition between fractional quantum Hall and superfluid states, arXiv:1201.4393.

  80. O. Aharony et al., The Phase structure of low dimensional large-N gauge theories on Tori, JHEP 01 (2006) 140 [hep-th/0508077] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Maltz.

Additional information

ArXiv ePrint: 1207.4195

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S., Hellerman, S., Maltz, J. et al. Light states in Chern-Simons theory coupled to fundamental matter. J. High Energ. Phys. 2013, 97 (2013). https://doi.org/10.1007/JHEP03(2013)097

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)097

Keywords

Navigation