Skip to main content
Log in

Running with rugby balls: bulk renormalization of codimension-2 branes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We compute how one-loop bulk effects renormalize both bulk and brane effective interactions for geometries sourced by codimension-two branes. We do so by explicitly integrating out spin-zero, -half and -one particles in 6-dimensional Einstein-Maxwell-Scalar theories compactified to 4 dimensions on a flux-stabilized 2D geometry. (Our methods apply equally well for D dimensions compactified to D − 2 dimensions, although our explicit formulae do not capture all divergences when D > 6.) The renormalization of bulk interactions are independent of the boundary conditions assumed at the brane locations, and reproduce standard heat-kernel calculations. Boundary conditions at any particular brane do affect how bulk loops renormalize this brane’s effective action, but not the renormalization of other distant branes. Although we explicitly compute our loops using a rugby ball geometry, because we follow only UV effects our results apply more generally to any geometry containing codimension-two sources with conical singularities. Our results have a variety of uses, including calculating the UV sensitivity of one-loop vacuum energy seen by observers localized on the brane. We show how these one-loop effects combine in a surprising way with bulk back-reaction to give the complete low-energy effective cosmological constant, and comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Vilenkin, Gravitational field of vacuum domain walls and strings, Phys. Rev. D 23 (1981) 852 [INSPIRE].

    ADS  Google Scholar 

  2. R. Gregory, Gravitational stability of local strings, Phys. Rev. Lett. 59 (1987) 740 [INSPIRE].

    Article  ADS  Google Scholar 

  3. A.G. Cohen and D.B. Kaplan, The exact metric about global cosmic strings, Phys. Lett. B 215 (1988) 67 [INSPIRE].

    ADS  Google Scholar 

  4. A. Vilenkin and P. Shellard, Cosmic strings and other topological defects, Cambridge University Press, Cambridge U.K. (1994).

    MATH  Google Scholar 

  5. R. Gregory and C. Santos, Cosmic strings in dilaton gravity, Phys. Rev. D 56 (1997) 1194 [gr-qc/9701014] [INSPIRE].

    ADS  Google Scholar 

  6. T. Gherghetta and M.E. Shaposhnikov, Localizing gravity on a string-like defect in six-dimensions, Phys. Rev. Lett. 85 (2000) 240 [hep-th/0004014] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. N. Arkani-Hamed, S. Dimopoulos, N. Kaloper and R. Sundrum, A small cosmological constant from a large extra dimension, Phys. Lett. B 480 (2000) 193 [hep-th/0001197] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. S. Kachru, M.B. Schulz and E. Silverstein, Selftuning flat domain walls in 5D gravity and string theory, Phys. Rev. D 62 (2000) 045021 [hep-th/0001206] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. C. Csáki, J. Erlich, C. Grojean and T.J. Hollowood, General properties of the selftuning domain wall approach to the cosmological constant problem, Nucl. Phys. B 584 (2000) 359 [hep-th/0004133] [INSPIRE].

    Article  ADS  Google Scholar 

  10. S. Förste, Z. Lalak, S. Lavignac and H.P. Nilles, A comment on selftuning and vanishing cosmological constant in the brane world, Phys. Lett. B 481 (2000) 360 [hep-th/0002164] [INSPIRE].

    ADS  Google Scholar 

  11. S. Förste, Z. Lalak, S. Lavignac and H.P. Nilles, The cosmological constant problem from a brane world perspective, JHEP 09 (2000) 034 [hep-th/0006139] [INSPIRE].

    Article  Google Scholar 

  12. C. Csáki, J. Erlich and C. Grojean, Gravitational Lorentz violations and adjustment of the cosmological constant in asymmetrically warped space-times, Nucl. Phys. B 604 (2001) 312 [hep-th/0012143] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J.M. Cline and H. Firouzjahi, No go theorem for horizon-shielded self tuning singularities, Phys. Rev. D 65 (2002) 043501 [hep-th/0107198] [INSPIRE].

    ADS  Google Scholar 

  14. J.-W. Chen, M.A. Luty and E. Ponton, A critical cosmological constant from millimeter extra dimensions, JHEP 09 (2000) 012 [hep-th/0003067] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. F. Leblond, R.C. Myers and D.J. Winters, Consistency conditions for brane worlds in arbitrary dimensions, JHEP 07 (2001) 031 [hep-th/0106140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. S.M. Carroll and M.M. Guica, Sidestepping the cosmological constant with football shaped extra dimensions, hep-th/0302067 [INSPIRE].

  17. Y. Aghababaie, C. Burgess, S. Parameswaran and F. Quevedo, Towards a naturally small cosmological constant from branes in 6D supergravity, Nucl. Phys. B 680 (2004) 389 [hep-th/0304256] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. I. Navarro, Codimension two compactifications and the cosmological constant problem, JCAP 09 (2003) 004 [hep-th/0302129] [INSPIRE].

    Article  ADS  Google Scholar 

  19. I. Navarro, Spheres, deficit angles and the cosmological constant, Class. Quant. Grav. 20 (2003) 3603 [hep-th/0305014] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  20. H.-P. Nilles, A. Papazoglou and G. Tasinato, Selftuning and its footprints, Nucl. Phys. B 677 (2004) 405 [hep-th/0309042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. P. Bostock, R. Gregory, I. Navarro and J. Santiago, Einstein gravity on the codimension 2-brane?, Phys. Rev. Lett. 92 (2004) 221601 [hep-th/0311074] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Graesser, J. Kile and P. Wang, Gravitational perturbations of a six-dimensional selftuning model, Phys. Rev. D 70 (2004) 024008 [hep-th/0403074] [INSPIRE].

    ADS  Google Scholar 

  23. J. Vinet and J.M. Cline, Can codimension-two branes solve the cosmological constant problem?, Phys. Rev. D 70 (2004) 083514 [hep-th/0406141] [INSPIRE].

    ADS  Google Scholar 

  24. J. Garriga and M. Porrati, Football shaped extra dimensions and the absence of self-tuning, JHEP 08 (2004) 028 [hep-th/0406158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. I. Navarro and J. Santiago, Gravity on codimension 2 brane worlds, JHEP 02 (2005) 007 [hep-th/0411250] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. G. Kofinas, On braneworld cosmologies from six dimensions and absence thereof, Phys. Lett. B 633 (2006) 141 [hep-th/0506035] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. G. Gibbons, R. Güven and C. Pope, 3-branes and uniqueness of the Salam-Sezgin vacuum, Phys. Lett. B 595 (2004) 498 [hep-th/0307238] [INSPIRE].

    ADS  Google Scholar 

  28. Y. Aghababaie, C. Burgess, J.M. Cline, H. Firouzjahi, S. Parameswaran, et al., Warped brane worlds in six-dimensional supergravity, JHEP 09 (2003) 037 [hep-th/0308064] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. C. Burgess, F. Quevedo, G. Tasinato and I. Zavala, General axisymmetric solutions and self-tuning in 6D chiral gauged supergravity, JHEP 11 (2004) 069 [hep-th/0408109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. E. Papantonopoulos and A. Papazoglou, Brane-bulk matter relations for a purely conical codimension-2 brane world, JCAP 07 (2005) 004 [hep-th/0501112] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. C. Burgess and L. van Nierop, Bulk axions, brane back-reaction and fluxes, JHEP 02 (2011) 094 [arXiv:1012.2638] [INSPIRE].

    Article  ADS  Google Scholar 

  32. C. Burgess and L. van Nierop, Large dimensions and small curvatures from supersymmetric brane back-reaction, JHEP 04 (2011) 078 [arXiv:1101.0152] [INSPIRE].

    Article  ADS  Google Scholar 

  33. C. Burgess, Supersymmetric large extra dimensions and the cosmological constant: an update, Annals Phys. 313 (2004) 283 [hep-th/0402200] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  34. C. Burgess, Towards a natural theory of dark energy: supersymmetric large extra dimensions, AIP Conf. Proc. 743 (2005) 417 [hep-th/0411140] [INSPIRE].

    Article  ADS  Google Scholar 

  35. C. Burgess and L. van Nierop, Technically natural cosmological constant from supersymmetric 6D brane backreaction, arXiv:1108.0345 [INSPIRE].

  36. A.J. Tolley, C. Burgess, D. Hoover and Y. Aghababaie, Bulk singularities and the effective cosmological constant for higher co-dimension branes, JHEP 03 (2006) 091 [hep-th/0512218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. C. Burgess, A. Maharana, L. van Nierop, A. Nizami and F. Quevedo, On brane back-reaction and de Sitter solutions in higher-dimensional supergravity, JHEP 04 (2012) 018 [arXiv:1109.0532] [INSPIRE].

    Article  ADS  Google Scholar 

  38. C. Burgess, D. Hoover and G. Tasinato, UV caps and modulus stabilization for 6D gauged chiral supergravity, JHEP 09 (2007) 124 [arXiv:0705.3212] [INSPIRE].

    Article  ADS  Google Scholar 

  39. C. Burgess, D. Hoover, C. de Rham and G. Tasinato, Effective field theories and matching for codimension-2 branes, JHEP 03 (2009) 124 [arXiv:0812.3820] [INSPIRE].

    Article  ADS  Google Scholar 

  40. C. Burgess, D. Hoover and G. Tasinato, Technical naturalness on a codimension-2 brane, JHEP 06 (2009) 014 [arXiv:0903.0402] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. A. Bayntun, C. Burgess and L. van Nierop, Codimension-2 brane-bulk matching: examples from six and ten dimensions, New J. Phys. 12 (2010) 075015 [arXiv:0912.3039] [INSPIRE].

    Article  ADS  Google Scholar 

  42. C. Burgess and D. Hoover, UV sensitivity in supersymmetric large extra dimensions: the Ricci-flat case, Nucl. Phys. B 772 (2007) 175 [hep-th/0504004] [INSPIRE].

    Article  ADS  Google Scholar 

  43. D. Hoover and C. Burgess, Ultraviolet sensitivity in higher dimensions, JHEP 01 (2006) 058 [hep-th/0507293] [INSPIRE].

    Article  ADS  Google Scholar 

  44. D. Ghilencea, D. Hoover, C. Burgess and F. Quevedo, Casimir energies for 6D supergravities compactified on T 2/Z N with Wilson lines, JHEP 09 (2005) 050 [hep-th/0506164] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. C. Burgess, L. van Nierop, S. Parameswaran, A. Salvio and M. Williams, Accidental SUSY: enhanced bulk supersymmetry from brane back-reaction, arXiv:1210.5405 [INSPIRE].

  46. M. Minamitsuji, The Casimir effect in rugby-ball type flux compactifications, J. Phys. A 41 (2008) 164060 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  47. S. Parameswaran, S. Randjbar-Daemi and A. Salvio, General perturbations for braneworld compactifications and the six dimensional case, JHEP 03 (2009) 136 [arXiv:0902.0375] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. P. Candelas and S. Weinberg, Calculation of gauge couplings and compact circumferences from selfconsistent dimensional reduction, Nucl. Phys. B 237 (1984) 397 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. M.A. Rubin and C.R. Ordonez, Symmetric tensor eigen spectrum of the laplacian on N spheres, J. Math. Phys. 26 (1985) 65 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. C.R. Ordonez and M.A. Rubin, Graviton dominance in quantum Kaluza-Klein theory, Nucl. Phys. B 260 (1985) 456 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. R. Kantowski and K.A. Milton, Scalar Casimir energies in M 4 × S n for even N , Phys. Rev. D 35 (1987) 549 [INSPIRE].

    ADS  Google Scholar 

  52. R. Kantowski and K. Milton, Casimir energies in M 4 × S n for even n. Greens function and zeta function techniques, Phys. Rev. D 36 (1987) 3712 [INSPIRE].

    ADS  Google Scholar 

  53. D. Birmingham, R. Kantowski and K.A. Milton, Scalar and spinor Casimir energies in even dimensional Kaluza-Klein spaces of the form M 4 × S n1 × S n2 × . . ., Phys. Rev. D 38 (1988) 1809 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  54. C.-C. Lee and C.-L. Ho, Symmetry breaking by Wilson lines and finite temperature and density effects, Mod. Phys. Lett. A 8 (1993) 1495 [INSPIRE].

    ADS  Google Scholar 

  55. M. Ito, Casimir energies due to matter fields in T 2 and T 2/Z 2 compactifications, Nucl. Phys. B 668 (2003) 322 [hep-ph/0301168] [INSPIRE].

    Article  ADS  Google Scholar 

  56. E. Ponton and E. Poppitz, Casimir energy and radius stabilization in five-dimensional orbifolds and six-dimensional orbifolds, JHEP 06 (2001) 019 [hep-ph/0105021] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. S. Matsuda and S. Seki, Cosmological constant probing shape moduli through large extra dimensions, Int. J. Mod. Phys. A 21 (2006) 3095 [hep-th/0404121] [INSPIRE].

    ADS  Google Scholar 

  58. Y. Cho and K. Shiraishi, One-loop effective potential for the vacuum gauge field in M 3 × S 3 × S 1 space-times, Mod. Phys. Lett. A 20 (2005) 833 [hep-th/0405154] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  59. Y. Hosotani, S. Noda and K. Takenaga, Dynamical gauge symmetry breaking and mass generation on the orbifold \( {T^2}/{{\mathbb{Z}}_2} \), Phys. Rev. D 69 (2004) 125014 [hep-ph/0403106] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  60. Y. Hosotani, S. Noda and K. Takenaga, Dynamical gauge-Higgs unification in the electroweak theory, Phys. Lett. B 607 (2005) 276 [hep-ph/0410193] [INSPIRE].

    ADS  Google Scholar 

  61. I. Antoniadis, K. Benakli and M. Quirós, Finite Higgs mass without supersymmetry, New J. Phys. 3 (2001) 20 [hep-th/0108005] [INSPIRE].

    Article  ADS  Google Scholar 

  62. J.E. Hetrick and C.-L. Ho, Dynamical symmetry breaking from toroidal compactification, Phys. Rev. D 40 (1989) 4085 [INSPIRE].

    ADS  Google Scholar 

  63. C.-C. Lee and C.-L. Ho, Recurrent dynamical symmetry breaking and restoration by Wilson lines at finite densities on a torus, Phys. Rev. D 62 (2000) 085021 [hep-th/0010162] [INSPIRE].

    ADS  Google Scholar 

  64. A. Albrecht, C. Burgess, F. Ravndal and C. Skordis, Exponentially large extra dimensions, Phys. Rev. D 65 (2002) 123506 [hep-th/0105261] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  65. E. Elizalde, K. Kirsten and Y. Kubyshin, On the instability of the vacuum in multidimensional scalar theories, Z. Phys. C 70 (1996) 159 [hep-th/9410101] [INSPIRE].

    Google Scholar 

  66. N. Haba, M. Harada, Y. Hosotani and Y. Kawamura, Dynamical rearrangement of gauge symmetry on the orbifold S 1/Z 2, Nucl. Phys. B 657 (2003) 169 [Erratum ibid. B 669 (2003) 381-382] [hep-ph/0212035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. B.S. De Witt, Dynamical theory of groups and fields, in Relativity, Groups and Topology, B.S. De Witt and C. De Witt eds., Gordon and Breach, New York U.S.A. (1965).

  69. P.B. Gilkey, The spectral geometry of a Riemannian manifold, J. Diff. Geom. 10 (1975) 601 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  70. S. Christensen, Regularization, renormalization and covariant geodesic point separation, Phys. Rev. D 17 (1978) 946 [INSPIRE].

    ADS  Google Scholar 

  71. S. Christensen and M. Duff, Axial and conformal anomalies for arbitrary spin in gravity and supergravity, Phys. Lett. B 76 (1978) 571 [INSPIRE].

    ADS  Google Scholar 

  72. S. Christensen and M. Duff, New gravitational index theorems and supertheorems, Nucl. Phys. B 154 (1979) 301 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. S. Christensen and M. Duff, New gravitational index theorems and supertheorems, Nucl. Phys. B 154 (1979) 301 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  74. S. Christensen, M. Duff, G. Gibbons and M. Roček, Vanishing one loop β-function in gauged N >4 supergravity, Phys. Rev. Lett. 45(1980) 161[INSPIRE].

    Article  ADS  Google Scholar 

  75. A. Barvinsky and G. Vilkovisky, The generalized Schwinger-Dewitt technique in gauge theories and quantum gravity, Phys. Rept. 119 (1985) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  76. D. McAvity and H. Osborn, A DeWitt expansion of the heat kernel for manifolds with a boundary, Class. Quant. Grav. 8 (1991) 603 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. D. Vassilevich, Heat kernel expansion: users manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  78. S. Weinberg, The quantum theory of fields. Vol. 1: foundations, Cambridge University Press, Cambridge U.K. (1995).

    Google Scholar 

  79. J. Dowker, Casimir effect around a cone, Phys. Rev. D 36 (1987) 3095 [INSPIRE].

    ADS  Google Scholar 

  80. D.N. Kabat, Black hole entropy and entropy of entanglement, Nucl. Phys. B 453 (1995) 281 [hep-th/9503016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  81. D.V. Fursaev and S.N. Solodukhin, On the description of the Riemannian geometry in the presence of conical defects, Phys. Rev. D 52 (1995) 2133 [hep-th/9501127] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  82. L. De Nardo, D.V. Fursaev and G. Miele, Heat kernel coefficients and spectra of the vector laplacians on spherical domains with conical singularities, Class. Quant. Grav. 14 (1997) 1059 [hep-th/9610011] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  83. D.V. Fursaev and G. Miele, Cones, spins and heat kernels, Nucl. Phys. B 484 (1997) 697 [hep-th/9605153] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  84. S. Weinberg, Gravitation and cosmology, John Wiley & Sons, New York U.S.A. (1973).

    Google Scholar 

  85. C.W. Misner, J.A. Wheeler and K.S. Thorne, Gravitation, W.H. Freeman & Company, New York U.S.A. (1973).

    Google Scholar 

  86. A. Salam and E. Sezgin, Chiral compactification on Minkowski ×S 2 of N = 2 Einstein-Maxwell supergravity in six-dimensions, Phys. Lett. B 147 (1984) 47 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  87. S. Randjbar-Daemi, A. Salam and J. Strathdee, Spontaneous compactification in six-dimensional Einstein-Maxwell theory, Nucl. Phys. B 214 (1983) 491 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  88. P.G. Freund and M.A. Rubin, Dynamics of dimensional reduction, Phys. Lett. B 97 (1980) 233 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  89. C. Burgess, Quantum gravity in everyday life: general relativity as an effective field theory, Living Rev. Rel. 7 (2004) 5 [gr-qc/0311082] [INSPIRE].

    Google Scholar 

  90. J.F. Donoghue, The effective field theory treatment of quantum gravity, AIP Conf. Proc. 1483 (2012) 73 [arXiv:1209.3511] [INSPIRE].

    Article  ADS  Google Scholar 

  91. J.F. Donoghue, Introduction to the effective field theory description of gravity, gr-qc/9512024 [INSPIRE].

  92. C. Lütken and C. Ordonez, Vacuum energy of eleven-dimensional supergravity, Class. Quant. Grav. 4 (1987) 1543 [INSPIRE].

    Article  ADS  Google Scholar 

  93. S. Parameswaran, S. Randjbar-Daemi and A. Salvio, Gauge fields, fermions and mass gaps in 6D brane worlds, Nucl. Phys. B 767 (2007) 54 [hep-th/0608074] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  94. S. Randjbar-Daemi and M. Shaposhnikov, A formalism to analyze the spectrum of brane world scenarios, Nucl. Phys. B 645 (2002) 188 [hep-th/0206016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  95. S. Randjbar-Daemi, A. Salam and J. Strathdee, Towards a selfconsistent computation of vacuum energy in eleven-dimensional supergravity, Nuovo Cim. B 84 (1984) 167 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  96. S. Parameswaran, S. Randjbar-Daemi and A. Salvio, Stability and negative tensions in 6D brane worlds, JHEP 01 (2008) 051 [arXiv:0706.1893] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  97. C. Burgess, S. Parameswaran and I. Zavala, The fate of unstable gauge flux compactifications, JHEP 05 (2009) 008 [arXiv:0812.3902] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  98. S. Randjbar-Daemi, A. Salvio and M. Shaposhnikov, On the decoupling of heavy modes in Kaluza-Klein theories, Nucl. Phys. B 741 (2006) 236 [hep-th/0601066] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  99. A. Salvio, 4D effective theory and geometrical approach, AIP Conf. Proc. 881 (2007) 58 [hep-th/0609050] [INSPIRE].

    Article  ADS  Google Scholar 

  100. A. Salvio, Aspects of physics with two extra dimensions, hep-th/0701020 [INSPIRE].

  101. M.J. Duff, The cosmological constant is possibly zero, but the proof is probably wrong, Phys. Lett. B 226 (1989) 36 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  102. E. Dudas, C. Papineau and V. Rubakov, Flowing to four dimensions, JHEP 03 (2006) 085 [hep-th/0512276] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  103. C. Burgess, C. de Rham and L. van Nierop, The hierarchy problem and the self-localized Higgs, JHEP 08 (2008) 061 [arXiv:0802.4221] [INSPIRE].

    Article  ADS  Google Scholar 

  104. E. Adelberger, B.R. Heckel and A. Nelson, Tests of the gravitational inverse square law, Ann. Rev. Nucl. Part. Sci. 53 (2003) 77 [hep-ph/0307284] [INSPIRE].

    Article  ADS  Google Scholar 

  105. C. Hoyle, D. Kapner, B.R. Heckel, E. Adelberger, J. Gundlach, et al., Sub-millimeter tests of the gravitational inverse-square law, Phys. Rev. D 70 (2004) 042004 [hep-ph/0405262] [INSPIRE].

    ADS  Google Scholar 

  106. P. Callin and C. Burgess, Deviations from Newtons law in supersymmetric large extra dimensions, Nucl. Phys. B 752 (2006) 60 [hep-ph/0511216] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  107. A. Salvio, Brane gravitational interactions from 6D supergravity, Phys. Lett. B 681 (2009) 166 [arXiv:0909.0023] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  108. W.D. Goldberger and M.B. Wise, Renormalization group flows for brane couplings, Phys. Rev. D 65 (2002) 025011 [hep-th/0104170] [INSPIRE].

    ADS  Google Scholar 

  109. C. de Rham, Classical renormalization of codimension-two brane couplings, AIP Conf. Proc. 957 (2007)309 [arXiv:0710.4598] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Williams.

Additional information

ArXiv ePrint: 1210.3753

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, M., Burgess, C.P., van Nierop, L. et al. Running with rugby balls: bulk renormalization of codimension-2 branes. J. High Energ. Phys. 2013, 102 (2013). https://doi.org/10.1007/JHEP01(2013)102

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)102

Keywords

Navigation