Skip to main content

Proteins from hyperthermophiles: Stability and enzymatic catalysis close to the boiling point of water

  • Chapter
  • First Online:
Biotechnology of Extremophiles

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 61))

Abstract

It has become clear since about a decade ago, that the biosphere contains a variety of microorganisms that can live and grow in extreme environments. Hyperthermophilic microorganisms, present among Archaea and Bacteria, proliferate at temperatures of around 80–100°C. The majority of the genera known to date are of marine origin, however, some of them have been found in continental hot springs and solfataric fields. Metabolic processes and specific biological functions of these organisms are mediated by enzymes and proteins that function optimally under these extreme conditions. We are now only starting to understand the structural, thermodynamic and kinetic basis for function and stability under conditions of high temperature, salt and extremes of pH. Insights gained from the study of such macromolecules help to extend our understanding of protein biochemistry and-biophysics and are becoming increasingly important for the investigation of fundamental problems in structure biology such as protein stability and protein folding. Extreme conditions in the biosphere require either the adaptation of the amino acid sequence of a protein by mutations, the optimization of weak interactions within the protein and at the protein-solvent boundary, the influence of extrinsic factors such as metabolites, cofactors, compatible solutes. Furthermore folding catalysts, known as chaperones, that assist the folding of proteins may be involved or increased protein synthesis in order to compensate for destruction by extreme conditions. The comparison of structure and stability of homologous proteins from mesophiles and hyperthermophiles has revealed important determinants of thermal stability of proteins. Rather than being the consequence of one dominant type of interactions or of a general stabilization strategy, it appears that the adaptation to high temperatures reflects a number of subtle interactions, often characteristic for each protein species, that minimize the surface energy and the hydration of apolar surface groups while burying hydrophobic residues and maximizing packing of the core as well as the energy due to charge-charge interactions and hydrogen bonds.

In this article, mechanisms of intrinsic stabilization of proteins are reviewed. These mechanisms are found on different levels of structural organization. Among the extrinsic stabilization factors, emphasis is put on archae chaperonins and their still strongly debated function. It will be shown, that optimization of weak protein-protein and protein-solvent interactions plays a key role in gaining thermostability. The difficulties in correlating suitable optimization criteria with real thermodynamic stability measures are due to experimental difficulties in measuring stabilization energies in large proteins or protein oligomers and will be discussed. Thus small single domain proteins or isolated domains of larger proteins may serve as model systems for large or multidomain proteins which due to the complexity of their thermal unfolding transitions cannot be analyzed by equilibrium thermodynamics. The analysis of the energetics of the thermal unfolding of a small, hyperthermostable DNA binding protein from Sulfolobus has revealed that a high melting temperature is not synonymous with a larger maximum thermodynamic stability. Finally, it is is now well documented, that many thermophilic and hyperthermophilic proteins show a statsistically increased number of salt bridges and salt bridge networks. However their contribution to thermodynamic and functional stability is still obscure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

GluDH:

Glutamate dehydrogenase

GAPDH:

Glycerinaldehyde phosphate dehydrogenase

AOR:

Aldehyde ferredoxin oxidoreductase

Tm:

Thermotoga maritima

Pf:

Pyrococcus furiosus

Cs:

Clostridium symbiosum

Ta:

Thermoplasma acidophilum

Taq:

Thermus aquaticus

Bs:

Bacillus stearothermophilus

Ha:

Homerus americanus (lobster)

Ph:

Pig heart

CS:

Citrate synthase

NMR:

Nuclear magnetic resonance

CD:

Circular Dichroism

V:

Volume

T:

Temperature

Tm :

Melting (transition) temperature

cal:

Calorie (1 cal=4.185 Joule)

K:

Kelvin

Å:

Ångström (1 Å=10−10 m)

N:

Number of atoms

nb :

Number of buried atoms

Ac :

Calculated surface area

Ao :

Observed surface area

d:

Distance

r.m.s.d.:

Root mean square distance

Cα :

Alpha carbon atom

Δ:

Difference

G:

Free energy

H:

Enthalpy

S:

Entropy

Cp :

Heat Capacity

References

  1. Woese CR, Kandler O, Wheelis ML (1990) Proc Natl Acad Sci USA 87:4576

    CAS  Google Scholar 

  2. Woese CR (1993) Biochemistry of Archaea. In: Kates M, Kushner DJ, Metheson AT (eds) New Comprehensive Biochemistry vol 26, Elsevier, Amsterdam, p 7

    Google Scholar 

  3. Stetter KO (1982) Nature 300:258

    Google Scholar 

  4. Bernhardt G, Lüdemann HD, Jaenicke R, König H, Stetter KO (1984) Naturwissenschaften 71:583

    CAS  Google Scholar 

  5. Jaenicke R (1991) Eur J Biochem 202:715

    CAS  Google Scholar 

  6. Böhm G, Jaenicke R (1994) Int J Pept Prot Res 43:97

    Google Scholar 

  7. Pace CN (1992) J Mol Biol 226:29

    CAS  Google Scholar 

  8. Knapp S, De Vos W, Rice D, Ladenstein R (1996) J Mol Biol 267:916–932

    Google Scholar 

  9. Macedo-Ribeiro S, Darimont B, Sterner R, Huber R (1996) Structure 4:1291

    CAS  Google Scholar 

  10. Pfeil W (1986) Unfolding of proteins. In: Hinz HJ (ed) Thermodynamic Data for Biochemistry and Biotechnology, Springer, Berlin Heidelberg New York, p 349

    Google Scholar 

  11. Pace CN, McNutt M, Gajiwala K (1996) FASEB J 10:75

    CAS  Google Scholar 

  12. Fersht AR (1972) J Mol Biol 64:497

    CAS  Google Scholar 

  13. Spassov VZ, Karshikoff AD, Ladenstein R (1994) Protein Sci 3:1556

    CAS  Google Scholar 

  14. Argos P, Rossmann MG, Gran UM, Zuber H, Frank G and Tratschin JD (1979) Biochemistry 18:5698

    CAS  Google Scholar 

  15. Stellwagen E, Wilgus H (1978) Nature 275:342

    CAS  Google Scholar 

  16. Spassov VZ, Atanasov BP (1994) Proteins Struct Funct Genetics 19:222

    CAS  Google Scholar 

  17. Spassov VZ, Karshikoff AD, Ladenstein R (1996) unpublished results

    Google Scholar 

  18. Ponnuswamy PG (1993) Prog Biophys Mol Biol 59:57

    CAS  Google Scholar 

  19. Rose GD, Wolfenden R (1993) Annu Rev Biophys Biomol Struct 22:381

    CAS  Google Scholar 

  20. Privalov PL, Makhadatze GI (1993) J Mol Biol 232:660

    CAS  Google Scholar 

  21. Hirono S, Liu Q, Moriguchi I (1991) Chem Pharm Bull (Tokyo) 39:3106

    CAS  Google Scholar 

  22. Tunon I, Silla E, Pascual-Ahuir JL (1992) Protein Eng 5:715

    CAS  Google Scholar 

  23. Spassov VZ, Karshikoff AD, Ladenstein R (1995) Protein Sci 4:1516

    CAS  Google Scholar 

  24. Chothia C (1974) Nature 248:338

    CAS  Google Scholar 

  25. Eisenberg D, McLachlan AD (1986) Nature 319:199

    CAS  Google Scholar 

  26. Jaenicke R (1996) FASEB J 10:84

    CAS  Google Scholar 

  27. Chan MK, Swarnalatha M, Kletzin A, Adams MWW, Rees DC (1995) Science 267: 1463

    CAS  Google Scholar 

  28. Kim J, Rees D C (1992) Nature 360:553

    CAS  Google Scholar 

  29. Richards FM (1977) Annu Rev Biophys Bioeng 6:151

    CAS  Google Scholar 

  30. Miller S, Janin J, Lesk AM, Chothia C (1987) J Mol Biol 196:641

    CAS  Google Scholar 

  31. Richards FM, Lim WA (1994) Q Rev Biophys 26:423

    Google Scholar 

  32. Rashin A, Iofin M, Honig B (1986) Biochemistry 25:3619

    CAS  Google Scholar 

  33. Eriksson A, Base W, Zhang XJ, Heinz D, Blaber M, Baldwin E, Matthews B (1993) Science 255:178

    Google Scholar 

  34. Ishikawa K, Nakamura H, Morikawa K, Kanaya S (1993) Biochemistry 32:6171

    CAS  Google Scholar 

  35. Sutherland KJ, Henneke CM, Towner P, Hough DW, Danson MJ (1990) Eur J Biochem 194:839

    CAS  Google Scholar 

  36. Sutherland KJ, Danson MJ, Hough DW, Towner P (1991) FEBS Lett 282:132

    CAS  Google Scholar 

  37. Russel RJM (1994) The crystal structure of Thermoplasma acidophilum citrate synthase, Ph. D. Thesis, University of Bath, UK

    Google Scholar 

  38. Remington SJ, Wiegand G, Huber R (1982) J Mol Biol 158:111

    CAS  Google Scholar 

  39. Russel RJM, Hough D, Danson MJ, Taylor GL (1994) Structure 2:115

    Google Scholar 

  40. Kleywegt GJ, Jones TA (1994) Acta Crystallogr. D50:178

    CAS  Google Scholar 

  41. Karshikoff A, Ladenstein R (1997) unpublished results

    Google Scholar 

  42. Day MW, Hsu BT, Joshua-Tor L, Park JB, Zhou ZH, Adams MWW, Rees DC (1992) Protein Sci 1:1494

    CAS  Google Scholar 

  43. Blake PR, Park JB, Zhou ZH, Hare DR, Adams MWW, Summers MF (1992) Protein Sci 1:1508

    CAS  Google Scholar 

  44. Busse SA, La Mar GN, Yu LP, Howard JB, Smith ET, Zhou ZH, Adams MWW (1992) Biochemistry 31:11952

    CAS  Google Scholar 

  45. Macedo-Ribeiro S, Darimont B, Sterner R, Huber R (1996) Structure 4:1291

    CAS  Google Scholar 

  46. Korndoerfer I, Steipe B, Huber R, Tomschy A, Jaenicke R (1995) J Mol Biol 246:X511

    Google Scholar 

  47. Yip K, Stillman TJ, Britton KL, Artymiuk PJ, Baker PJ, Sedelnikova SE, Engel PC, Pasquo A, Chiaraluce R, Consalvi V, Scandurra R, Rice DW (1995) Structure 3:1147

    CAS  Google Scholar 

  48. Tomschy A, Glockshuber R, Jaenicke R (1993) Eur J Biochem 214:43

    CAS  Google Scholar 

  49. Stillman TJ, Baker PJ, Britton KL, Rice DW (1993) J Mol Biol 234:1131

    CAS  Google Scholar 

  50. Eggen RIL, Geerling ACM, Waldkötter K, Antranikian G, de Vos WM (1993) Gene 132:143

    CAS  Google Scholar 

  51. Rossmann MG, Moras D, Olsen KW (1974) Nature 250:194

    CAS  Google Scholar 

  52. Hennig M, Darimont B, Sterner R, Kirschner K, Jansonius JN (1995) Structure 3:1295

    CAS  Google Scholar 

  53. Consalvi V (1996) personal communication.

    Google Scholar 

  54. Knapp S (1996) personal communication

    Google Scholar 

  55. Ishikawa K, Okumura M, Katayanagi K, Kimura S, Kanaya S, Nakamura H, Morikawa K (1993) J Mol Biol 230:529

    CAS  Google Scholar 

  56. Kelly CA, Nishiyama M, Ohnishi Y, Beppu T, Birktoft JJ (1993) Biochemistry 32:3913

    CAS  Google Scholar 

  57. Perutz MF, Raidt H (1975) Nature 255:256

    CAS  Google Scholar 

  58. Horovitz A, Serrano L, Avron B, Bycroft M, Fersht AR (1990) J Mol Biol 216:1031

    CAS  Google Scholar 

  59. Waldburger CD, Schildbach JF, Sauer RT (1995) Nature Struct Biol 2:122

    CAS  Google Scholar 

  60. Carter PJ, Winter G, Wilkinson AJ, Fersht AR (1984) Cell 38:835

    CAS  Google Scholar 

  61. Horovitz A, Fersht AR (1990) J Mol Biol 214:613

    CAS  Google Scholar 

  62. Privalov P (1982) Adv Prot Chem 35:1

    CAS  Google Scholar 

  63. Pace CN (1986) Methods Enzymol 131:266

    CAS  Google Scholar 

  64. Baumann H, Knapp S, Lundbäck T, Ladenstein R, Härd T (1994) Nature Struct Biol 11:808

    Google Scholar 

  65. Program DALI, Holm L, Sander C (1993) J Mol Biol 233:123

    CAS  Google Scholar 

  66. Edmondson SP, Qiu L, Shriver JW (1995) Biochemistry 34:13289

    CAS  Google Scholar 

  67. Dijk J, Reinhardt R (1986) The structure of DNA binding proteins from eu and archaebacteria. In: Gualerzi CO, Pon CL (eds) Bacterial Chromatin. Springer, Berlin Heidelberg New York, p 185

    Google Scholar 

  68. Knapp S, Karshikoff A, Berndt KD, Christova P, Atanasov B, Ladenstein R (1996) J Mol Biol 264:1132–1144

    CAS  Google Scholar 

  69. Klump H, DiRuggiero J, Kessel M, Park J, Adams MWW, Robb FT (1992) J Biol Chem 267:22681

    CAS  Google Scholar 

  70. McAfee JG, Edmondson SP, Datta PK, Shriver JW, Gupta R (1995) Biochemistry 34:10063

    CAS  Google Scholar 

  71. Becktel, Schellman. 1987, Biopolymers 26, 1859

    CAS  Google Scholar 

  72. Swint L, Robertson AD (1993) Prot Sci 2:2037

    CAS  Google Scholar 

  73. Alexander P, Fahnestock S, Lee T, Orban J, Bryan P (1992) Biochemistry 31: 3597

    CAS  Google Scholar 

  74. Privalov PL, Makhatadze GI (1990) J Mol Biol 213:385

    CAS  Google Scholar 

  75. Gomez J, Hilser VJ, Xie D, Freire E (1995) Proteins 22:404

    CAS  Google Scholar 

  76. Nojima H, Ikai A, Oshima T, Noda H (1977) J Mol Biol 116:429

    CAS  Google Scholar 

  77. Day MW, Hsu BT, Joshua-Tor L, Park JB, Zhou ZH, Adams MWW, Rees DC (1992) Prot Sci 1:1494

    CAS  Google Scholar 

  78. Privalov PL, Gill SJ (1988) Adv Prot Chem 39:191

    CAS  Google Scholar 

  79. Murphy KP, Privalov PL, Gill SJ (1990) Science 247:559

    CAS  Google Scholar 

  80. Ragone R, Colonna G (1995) J Am Chem Soc 117:16

    CAS  Google Scholar 

  81. Griko YV, Makhatadze GI, Privalov PL, Hartley RW (1994) Protein Sci 3:669

    CAS  Google Scholar 

  82. Yu Y, Makhatadze GI, Pace N, Privalov PL (1994) Biochemistry 33:3312

    CAS  Google Scholar 

  83. Britton KL et al., Yip KSP (1995) Eur J Biochem 229:688

    CAS  Google Scholar 

  84. Risse B, Stempfer G, Rudolph R, Jaenicke R (1992) Protein Sci 1:1699

    CAS  Google Scholar 

  85. Timasheff SN (1993) Annu Rev Biophys Biomol Struc 22:67

    CAS  Google Scholar 

  86. Santoro MM, Liu Y, Khan SMA, Hou LX, Bolen DW (1992) Biochemistry 31: 5278

    CAS  Google Scholar 

  87. Ellis RJ, van der Vies SM (1991) Annu Rev Biochem 60:321

    CAS  Google Scholar 

  88. Hendrick JP, Hartl FU (1995) FASEB J 9:1559

    CAS  Google Scholar 

  89. Trent JD, Osipiuk J, Pinkau T (1990) J Bacteriol 172:1478

    CAS  Google Scholar 

  90. Ellis RJ (1992) Nature 358:191

    CAS  Google Scholar 

  91. Phipps BM, Hofmann A, Stetter KO, Baumeister W (1991) EMBO J 10:1711

    CAS  Google Scholar 

  92. Phipps BM, Typke D, Hegerl R, Volker S, Hoffmann A, Stetter KO, Baumeister W (1993) Nature 361:475

    CAS  Google Scholar 

  93. Marco S, Urena D, Carrascosa JL, Waldmann T, Peters J, Hegerl R, Pfeifer G, Sack-Kongehl H, Baumeister W (1994) FEBS Lett 341:152

    CAS  Google Scholar 

  94. Waldmann T, Nimmesgern E, Nitsch M, Peters J, Pfeifer G, Muller S, Kellermann E, Engel A, Hartl FU, Baumeister W (1995) Eur J Biochem 227:848

    CAS  Google Scholar 

  95. Lewis VA, Hynes GM, Zheng D, Saibil H, Willison K (1992) Nature 358: 249

    CAS  Google Scholar 

  96. Frydman J, Nimmesgern E, Erdjument-Bromage H, Wall S, Tempst P, Hartl FU (1992) EMBO J 11:4767

    CAS  Google Scholar 

  97. Knapp S, Schmidt-Krey I, Hebert H, Bergman T, Jörnvall H, Ladenstein R (1994) J Mol Biol 242:397

    CAS  Google Scholar 

  98. Trent JD, Nimmesgern E, Wall JS, Hartl FU, Horwich AL (1991) Nature 354: 490

    CAS  Google Scholar 

  99. Martin J, Langer T, Boteva R, Schramel A, Horwich AL, Hartl FU (1991) Nature 352:36

    CAS  Google Scholar 

  100. Carrascosa JL, Abella G, Marco S, Carazo JM (1990) J Struct Biol 104:2

    CAS  Google Scholar 

  101. Braig K, Otwinowski Z, Hedge R, Boisvert DJ, Joachimiak A, Horwich AL, Sigler PB (1994) Nature 371:578

    CAS  Google Scholar 

  102. Langer T, Pfeifer G, Martin J, Baumeister W, Hartl FU (1992) EMBO J 11: 4757

    CAS  Google Scholar 

  103. Saibil H, Wood S (1993) Curr Op Struct Biol 3:207

    CAS  Google Scholar 

  104. Guagliardi A, Cerchia L, Bartolucci S, Rossi M (1994) Protein Sci 3:1436

    CAS  Google Scholar 

  105. Ursic D, Sedbrook JC, Himmel KL, Culbertson MR (1994) Mol Cell Biol 5:1065

    CAS  Google Scholar 

  106. Brown CR, Doxsey SJ, Hong-Brown LQ, Martin RL, Welch WJ (1996) J Biol Chem 271:824

    CAS  Google Scholar 

  107. Trent JD, Kagawa HK, Yaoi T, Olle E, Zaluzec NJ (1997) Proc Natl Acad Sci USA 94:5383–5388

    CAS  Google Scholar 

  108. Knapp S, Ladenstein R (1995) unpublished results

    Google Scholar 

  109. Ellis M, Knapp S, Koeck PJB, Fakoor-Biniaz Z, Ladenstein R, Hebert H (1997) manuscript submitted

    Google Scholar 

  110. Leuschner C, Antranikian G (1995) World. J Microbiol Biotechnol 11:95

    CAS  Google Scholar 

  111. Krahe M, Antranikian G, Märkl H (1996) FEMS Microbiol Reviews 18:271

    CAS  Google Scholar 

  112. Stetter KO (1996) FEMS Microbiol Reviews 18:149

    CAS  Google Scholar 

  113. Sunna A, Antranikian G (1997) Crit Rev Biotechnology 17:39

    CAS  Google Scholar 

  114. Sunna A, Moracci M, Rossi M, Antranikian G (1997) Extremophiles 1:2

    CAS  Google Scholar 

  115. Antranikian G (1992) Microbial degradation of starch. In: Winkelmann G (ed) Microbial degradation of natural products. VCH, Weinheim, p 27

    Google Scholar 

  116. Jorgensen S, Vorgias C, Antranikian G (1997) J Biol Chem in press

    Google Scholar 

  117. Petersen S, Jensen B, Dijkhuizen L, Jorgensen S, Dijkstra B (1995) Chemtech 12:19

    Google Scholar 

  118. Wind R, Liebl W, Buitelaar R, Penninga D, Spreinat A, Dijkhuizen L, Bahl H (1995) Appl Environ Microbiol 61:1257

    CAS  Google Scholar 

  119. Prowe S, Van de Vossenberg J, Driessen A, Antranikian G, Konings W (1996) J Bacteriol 178:4099

    CAS  Google Scholar 

  120. Friedrich A, Antranikian G (1996) Appl Environ Microbiol 62:2875

    CAS  Google Scholar 

  121. Kornberg A, Baker T (1992) DNA Replication. 2nd edn WM Freeman, New York

    Google Scholar 

  122. Mullis K, Faloona F, Saiki R, Horn G, Ehrlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbour Sym. Quant Biol 247:7116

    Google Scholar 

  123. Canganella F, Jones WJ, Gambacorta A, Antranikian G (1997) Arch Microbiol 167: 233

    CAS  Google Scholar 

  124. Knapp S, Rüdiger A, Antranikian G, Jorgensen PL, Ladenstein R (1995) Proteins 23:595

    CAS  Google Scholar 

  125. Klumpp M, Baumeister W, Essen LO (1997) Cell 91:263

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Antranikian (Professor Dr.)

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this chapter

Cite this chapter

Ladenstein, R., Antranikian, G. (1998). Proteins from hyperthermophiles: Stability and enzymatic catalysis close to the boiling point of water. In: Antranikian, G. (eds) Biotechnology of Extremophiles. Advances in Biochemical Engineering/Biotechnology, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102289

Download citation

  • DOI: https://doi.org/10.1007/BFb0102289

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63817-9

  • Online ISBN: 978-3-540-69652-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics