Skip to main content

The decidability of simultaneous rigid E-unification with one variable

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1379))

Abstract

We show that simultaneous rigid E-unification, or SREU for short, is decidable and in fact EXPTIME-complete in the case of one variable. This result implies that the ∀*∃∀* fragment of intuitionistic logic with equality is decidable. Together with a previous result regarding the undecidability of the ∃∃-fragment, we obtain a complete classification of decidability of the prenex fragment of intuitionistic logic with equality, in terms of the quantifier prefix. It is also proved that SREU with one variable and a constant bound on the number of rigid equations is P-complete.

Supported by grants from the Swedish Royal Academy of Sciences, INTAS and NUTEK.

Partially supported by grants from NSF, ONR and the Faculty of Science and Technology of Uppsala University.

Supported by the NSF grants CCR-9404930 and INT-9401087.

Supported by a TFR grant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.B. Andrews. Theorem proving via generell matings. Journal of the Association for Computing Machinery, 28(2):193–214, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Bibel. Deduction. Automated Logic. Academic Press, 1993.

    Google Scholar 

  3. W.S. Brainerd. Tree generating regular systems. Information and Control, 14:217–231, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  4. C.C. Chang and H.J. Keisler. Model Theory. North-Holland, Amsterdam, third edition, 1990.

    MATH  Google Scholar 

  5. J.L. Coquidé, M. Dauchet, R. Gilleron, and S. Vágvölgyi. Bottom-up tree pushdown automata: classification and connection with rewrite systems. Theoretical Computer Science, 127:69–98, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Courcelle. On recognizable sets and tree automata. In M. Nivat and H. AitKaci, editors, Resolution of Equations in Algebraic Structures. Academic Press, 1989.

    Google Scholar 

  7. M. Dauchet. Rewriting and tree automata. In H. Comon and J.P. Jouannaud, editors, Term Rewriting (French Spring School of Theoretical Computer Science), volume 909 of Lecture Notes in Computer Science, pages 95–113. Springer Verlag, Font Romeux, France, 1993.

    Google Scholar 

  8. E. De Kogel. Rigid E-unification simplified. In P. Baumgartner, R. Hähnle, and J. Posegga, editors, Theorem Proving with Analytic Tableaux and Related Methods, number 918 in Lecture Notes in Artificial Intelligence, pages 17–30, Schloß Rheinfels, St. Goar, Germany, May 1995.

    Google Scholar 

  9. A. Degtyarev, Yu. Gurevich, P. Narendran, M. Veanes, and A. Voronkov. The decidability of simultaneous rigid E-unification with one variable. UPMAIL Technical Report 139, Uppsala University, Computing Science Department, March 1997.

    Google Scholar 

  10. A. Degtyarev, Yu. Gurevich, and A. Voronkov. Herbrand's theorem and equational reasoning: Problems and solutions. In Bulletin of the European Association for Theoretical Computer Science, volume 60. October 1996. The “Logic in Computer Science” column.

    Google Scholar 

  11. A. Degtyarev and A. Voronkov. Simultaneous rigid E-unification is undecidable. UPMAIL Technical Report 105, Uppsala University, Computing Science Department, May 1995.

    Google Scholar 

  12. A. Degtyarev and A. Voronkov. Decidability problems for the prenex fragment of intuitionistic logic. In Eleventh Annual IEEE Symposium on Logic in Computer Science (LICS'96), pages 503–512, New Brunswick, NJ, July 1996. IEEE Computer Society Press.

    Chapter  Google Scholar 

  13. A. Degtyarev and A. Voronkov. Simultaneous rigid E-unification is undecidable. In H. Kleine Büning, editor, Computer Science Logic. 9th International Workshop, CSL'95, volume 1092 of Lecture Notes in Computer Science, pages 178–190, Paderborn, Germany, September 1995, 1996.

    Google Scholar 

  14. A. Degtyarev and A. Voronkov. The undecidability of simultaneous rigid E- unification. Theoretical Computer Science, 166(1–2):291–300, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. Van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B: Formal Methods and Semantics, chapter 6, pages 243–309. North Holland, Amsterdam, 1990.

    Google Scholar 

  16. J. Doner. Tree acceptors and some of their applications. Journal of Computer and System Sciences, 4:406–451, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Fitting. First-order modal tableaux. Journal of Automated Reasoning, 4:191–213, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Frühwirth, E. Shapiro, M. Vardi, and E. Yardeni. Logic programs as types of logic programs. In Proc. 6th Symposium on Logics in Computer Science (LICS), pages 300–309, 1991.

    Google Scholar 

  19. J.H. Gallier, P. Narendran, D. Plaisted, and W. Snyder. Rigid E-unification is NP-complete. In Proc. IEEE Conference on Logic in Computer Science (LICS), pages 338–346. IEEE Computer Society Press, July 1988.

    Google Scholar 

  20. J.H. Gallier, S. Raatz, and W. Snyder. Theorem proving using rigid E-unification: Equational matings. In Proc. IEEE Conference on Logic in Computer Science (LICS), pages 338–346. IEEE Computer Society Press, 1987.

    Google Scholar 

  21. F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiodó, Budapest, 1984.

    MATH  Google Scholar 

  22. J. Goubault. Rigid E-unifiability is DEXPTIME-complete. In Proc. IEEE Conference on Logic in Computer Science (LICS). IEEE Computer Society Press, 1994. 23. R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. Limits to Parallel Computation: P-Completeness Theory. Oxford University Press, 1995.

    Google Scholar 

  23. Y. Gurevich and M. Veanes. Some undecidable problems related to the Herbrand theorem. UPMAIL Technical Report 138, Uppsala University, Computing Science Department, March 1997.

    Google Scholar 

  24. Y. Gurevich and A. Voronkov. The monadic case of simultaneous rigid E- unification. UPMAIL Technical Report 137, Uppsala University, Computing Science Department, 1997. To appear in Proc. of ICALP'97.

    Google Scholar 

  25. D. Kozen. Complexity of finitely presented algebras. Technical Report TR 76-294, Cornell University, Ithaca, N.Y., 1976.

    Google Scholar 

  26. D. Kozen. Complexity of finitely presented algebras. In Proc. of the 9th Annual Symposium on Theory of Computing, pages 164–177, New York, 1977. ACM.

    Google Scholar 

  27. D. Kozen. Lower bounds for natural proof systems. In Proc. 18th IEEE Symposium on Foundations of Computer Science (FOCS), pages 254–266, 1977.

    Google Scholar 

  28. D.S. Lankford. Canonical inference. Technical report, Department of Mathematics, South-Western University, Georgetown, Texas, 1975.

    Google Scholar 

  29. V. Lifschitz. Problem of decidability for some constructive theories of equalities (in Russian). Zapiski Nauchnyh Seminarov LOMI, 4:78–85, 1967. English Translation in: Seminars in Mathematics: Steklov Math. Inst. 4, Consultants Bureau, NY-London, 1969, p.29–31.

    Google Scholar 

  30. D.W. Loveland. Mechanical theorem proving by model elimination. Journal of the Association for Computing Machinery, 15:236–251, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Mezei and J.B. Wright. Algebraic automata and context-free sets. Information and Control, 11:3–29, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  32. G.E. Mints. Choice of terms in quantifier rules of constructive predicate calculus (in Russian). Zapiski Nauchnyh Seminarov LOMI, 4:78–85, 1967. English Translation in: Seminars in Mathematics: Steklov Math. Inst. 4, Consultants Bureau, NY-London, 1969, p.43–46.

    Google Scholar 

  33. V.P. Orevkov. Unsolvability in the constructive predicate calculus of the class of the formulas of the type ∣∣∀∃ (in Russian). Soviet Mathematical Doklady, 163(3):581–583, 1965.

    MathSciNet  Google Scholar 

  34. V.P. Orevkov. Solvable classes of pseudo-prenex formulas (in Russian). Zapiski Nauchnyh Seminarov LOMI, 60:109–170, 1976. English translation in: Journal of Soviet Mathematics.

    MathSciNet  MATH  Google Scholar 

  35. H. Seidl. Haskell overloading is DEXPTIME-complete. Information Processing Letters, 52(2):57–60, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Shostak. An algorithm for reasoning about equality. Communications of the ACM, 21:583–585, July 1978.

    Article  MathSciNet  MATH  Google Scholar 

  37. W. Snyder. Efficient ground completion: An O(nlogn) algorithm for generating reduced sets of ground rewrite rules equivalent to a set of ground equations E. In G. Goos and J. Hartmanis, editors, Rewriting Techniques and Applications, volume 355 of Lecture Notes in Computer Science, pages 419–433. Springer-Verlag, 1989.

    Google Scholar 

  38. R. Statman. Lower bounds on Herbrand's theorem. Proc. American Mathematical Society, 75(1):104–107, 1979.

    MathSciNet  MATH  Google Scholar 

  39. J.W. Thatcher and J.B. Wright. Generalized finite automata theory with an application to a decision problem of second-order logic. Mathematical Systems Theory, 2(1):57–81, 1968.

    Article  MathSciNet  Google Scholar 

  40. M. Veanes. On computational complexity of basic decision problems of finite tree automata. UPMAIL Technical Report 133, Uppsala University, Computing Science Department, January 1997.

    Google Scholar 

  41. M. Veanes. The undecidability of simultaneous rigid E-unification with two variables. To appear in Proc. Kurt Gödel Colloquium KGC'97, 1997.

    Google Scholar 

  42. A. Voronkov. Proof search in intuitionistic logic based on constraint satisfaction. In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, Theorem Proving with Analytic Tableaux and Related Methods. 5th International Workshop, TABLEAUX '96, volume 1071 of Lecture Notes in Artificial Intelligence, pages 312–329, Terrasini, Palermo Italy, May 1996.

    Google Scholar 

  43. A. Voronkov. Proof search in intuitionistic logic with equality, or back to simultaneous rigid E-unification. In M.A. McRobbie and J.K. Slaney, editors, Automated DeductionCADE-13, volume 1104 of Lecture Notes in Computer Science, pages 32–46, New Brunswick, NJ, USA, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tobias Nipkow

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Degtyarev, A., Gurevich, Y., Narendran, P., Veanes, M., Voronkov, A. (1998). The decidability of simultaneous rigid E-unification with one variable. In: Nipkow, T. (eds) Rewriting Techniques and Applications. RTA 1998. Lecture Notes in Computer Science, vol 1379. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0052370

Download citation

  • DOI: https://doi.org/10.1007/BFb0052370

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64301-2

  • Online ISBN: 978-3-540-69721-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics