Skip to main content

Physiological and metabolic responses to hypoxia in invertebrates

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 125

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 125))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert JL, Ellington WR (1985) Patterns of energy metabolism in the stone crab, Menippe mercenaria, during severe hypoxia and subsequent recovery. J. Exp Zool 234:175–183

    Google Scholar 

  • Arnold H, Pette D (1970) Binding of aldolase and triosephosphate dehydrogenase to F-actin and modification of catalytic properties of aldolase. Eur J Biochem 15:360–366

    Google Scholar 

  • Arnold H, Nolte J, Pette D (1968) Quantitative and histochemical studies on the desorption and readsorption of aldolase in cross-striated muscle. J Histochem Cytochem 17:314–320

    Google Scholar 

  • Arp AJ, Hansen BM, Julian D (1992) The burrow environment and coelomic fluid characteristics of the echiuran worm Urechis caupo from three northern California population sites. Mar Biol 113:613–623

    Google Scholar 

  • Baldwin J, England WR (1980) A comparison of anaerobic energy metabolism in mantle and tentacle muscle of the blue-ringed octopus, Hapalochlaena maculosa, during swimming. Aust J Zool 28:407–412

    Google Scholar 

  • Baldwin J, England WR (1982a) Multiple forms of octopine dehydrogenase in Strombus luhuanus: genetic basis of polymorphism, properties of the enzymes, and relationship between the octopine dehydrogenase phenotype and the accumulation of anaerobic end-products during exercise. Biochem Genet 20:1015–1025

    Google Scholar 

  • Baldwin J, England WR (1982b) The properties and functions of alanopine dehydrogenase and octopine dehydrogenase from the pedal retractor muscle of Strombidaea. Pac Sci 36:381–394

    Google Scholar 

  • Baldwin J, Opie AM (1978) On the role of octopine dehydrogenase in the adductor muscles of bivalve molluscs. Comp Biochem Physiol 61B:85–92

    Google Scholar 

  • Baldwin J, Lee AK, England WR (1981) The functions of octopine dehydrogenase and D-lactate dehydrogenase in the pedal retractor muscle of the dog whelk Nassarius coronatus. Mar Biol 62:235–238

    Google Scholar 

  • Barman TE (1969) Enzyme handbook. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Barrett J (1978) Activation of succinate dehydrogenase from adult Fasciola hepatica (Trematoda). Parasitology 76:269–275

    Google Scholar 

  • Barrett J (1984) The anaerobic end products of helminths. Parasitology 88:179–198

    Google Scholar 

  • Barrow KD, Jamieson DD, Norton RS (1980) 31P nuclear magnetic resonance studies of energy metabolism in tissue from the marine invertebrate Tapes watlingi. Eur J Biochem 103:289–297

    Google Scholar 

  • Bayne BL (1971) Ventilation, the heart beat and oxygen uptake by Mytilus edulis L. in declining oxygen tensions. Comp Biochem Physiol 40A:1065–1085

    Google Scholar 

  • Beis I, Newsholme EA (1975) The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Biochem J 152:23–32

    Google Scholar 

  • Behm CA (1991) Fumarate reductase and the evolution of electron transport systems. In: Bryant C (ed) Metazoan life without oxygen. Chapman and Hall, London, pp 89–108

    Google Scholar 

  • Bernt E, Gutmann I (1974) Äthanol. Bestimmung mit Alkohol-Dehydrogenase und NAD. In: bergmeyer HU (ed) Methoden der enzymatischen Analyse, 3rd ed. Verlag Chemie, Weinheim, pp 1545–1548

    Google Scholar 

  • Biethinger M, Hoffmann R, Hofer HW (1991) Phosphofructokinase from mollusc muscle is activated by phosphorylation. Arch Biochem Biophys 287:263–267

    Google Scholar 

  • Bishai FR, Zebe E (1960) Enzymverteilungsmuster und Metabolitspiegel in der Beinmuskulatur der Heuschrecken. Verh Dtsch Zool Ges 53:314–319

    Google Scholar 

  • Bishop SH, Greenwalt DE, Burcham JM (1981) Amino acid cycling in ribbed mussel tissues subjected to hyperosmotic shock. J Exp Zool 215:277–287

    Google Scholar 

  • Black CP, Tenney SM (1980) Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respir Physiol 39:217–239

    Google Scholar 

  • Booth CE, Mangum CP (1978) Oxygen uptake and transport in the lamellibranch mollusc Modiolus demissus. physiol Zool 51:17–32

    Google Scholar 

  • Booth CE, McMahon BR, Pinder AW (1982) Oxygen uptake and the potentiating effects of increased hemolymph lactate on oxygen transport during exercise in the Blue crab, Callinectes sapidus. J Comp Physiol 148:111–121

    Google Scholar 

  • Booth CE, McDonald DG, Walsh PJ (1984) Acid-base balance in the sea mussel Mytilus edulis. I. Effects of hypoxia and air-exposure on hemolymph acid-base status. Mar Biol Lett 5:347–358

    Google Scholar 

  • Bourne GB, McMahon BR (1989) Control of cardiac output and its distribution in crustacean open circulatory systems. J Physiol 418:134

    Google Scholar 

  • Boutilier RG (1990) Respiratory gas tensions in the environment. In: Boutilier RG (ed) Advances in comparative and environmental physiology. Vol 6, pp 1–13, Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Bouverot P (1985) Adaptation to altitude hypoxia in vertebrates. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Boyden CR (1972) The behaviour, survival and respiration of the cockles Cerastoderma edule and C. glaucum in air. J Mar Biol Ass UK 52:661–680

    Google Scholar 

  • Boyland E (1928) Chemical changes in muscle. II. Invertebrate muscle. Biochem J 22:362–376

    Google Scholar 

  • Brafield AE (1964) The oxygen content of interstitial water in sandy shores. J Animal Ecol 33:97–116

    Google Scholar 

  • Branch GM (1979) Respiratory adaptations in the limpet Patella gratina: a comparison with other limpets. Comp Biochem Physiol 62A:641–647

    Google Scholar 

  • von Brand T (1946) Anaerobiosis in invertebrates. Biodynamica Monographs No 4. Biodynamica, Normandy, Missouri

    Google Scholar 

  • von Brand T, Baernstein HD, Mehlman B (1950) Studies on the anaerobic metabolism and the anaerobic carbohydrate consumption of some fresh water snails. Biol Bull 98:266–276

    Google Scholar 

  • Bridges CR, Brand AR (1980) The effect of hypoxia on oxygen consumption and blood lactate levels of some marine crustacea. Comp Biochem Physiol 65A:399–409

    Google Scholar 

  • Brinkhoff W, Stöckmann K, Grieshaber MK (1983) Natural occurrence of anaerobiosis in molluscs from intertidal habitats. Oecologia 57:151–155

    Google Scholar 

  • Brooke SPJ, Storey KB (1989) Influence of hormones, second messengers and pH on the expression of metabolic responses to anoxia in a marine whelk. J exp Biol 145:31–43

    Google Scholar 

  • Brooks SPJ, Storey KB (1990) Glycolytic enzyme binding and metabolic control in estivation and anoxia in the land snail Otala lactea. J exp Biol 151:193–204

    Google Scholar 

  • Bryant C (1991) Metazoan life without oxygen. Chapman and Hall London, pp 291

    Google Scholar 

  • Bueding E (1962) Comparative aspects of carbohydrate metabolism. Fed Proc 21:1039–1046

    Google Scholar 

  • Bunge G (1890) Weitere Untersuchungen über die Athmung der Würmer. Z Physiol Chem 14:318–324

    Google Scholar 

  • Burke EM (1979) Aerobic and anaerobic metabolism during activity and hypoxia in two species of intertidal crabs. Biol Bull 156:157–168

    Google Scholar 

  • Burnett LE (1979) The effects of environmental oxygen levels on the respiratory function of hemocyanin in the crabs, Libinia emarginata and Ocypode quadrata. J Exp Zool 210:289–300

    Google Scholar 

  • Burnett LE, Bridges CR (1981) The physiological properties and function of ventilatory pauses in the crab Cancer pagurus. J Comp Physiol 145:81–88

    Google Scholar 

  • Burnett LE, DeFur PL, Jorgensen DD (1981) Application of the thermodilution technique for measuring cardiac output and assessing cardiac stroke volume in crabs. J Exp Zool 218:165–173

    Google Scholar 

  • Busa WB, Crowe JH (1983) Intracellular pH regulates transitions between dormancy and development of brine shrimp (Artemia salina) embryos. Science 221:366–368

    Google Scholar 

  • Butler PJ, Taylor EW, McMahon BR (1978) Respiratory and circulatory changes in the lobster (Homarus vulgaris) during long term exposure to moderate hypoxia. J exp Biol 73:131–146

    Google Scholar 

  • Cameron JN (1986) Acid-base equilibria in invertebrates. In: Heisler N (ed) Acid-base regulation in animals. Elsevier, Amsterdam, pp 357–394

    Google Scholar 

  • Cameron JN (1990) Unusual aspects of calcium metabolism in aquatic animals. Ann Rev Physiol 52:77–95

    Google Scholar 

  • Carlsson KH, Gäde G (1986) Metabolic adaptation of the horseshoe crab, Limulus polyphemus, during exercise and environmental hypoxia and subsequent recovery. Biol Bull 171:217–235

    Google Scholar 

  • Chih CP, Ellington WR (1983) Energy metabolism during contractile activity and environmental hypoxia in the phasic adductor muscle of the bay scallop, Argopecten irradians concentricus. Physiol Zool 56:623–631

    Google Scholar 

  • Clarke FM, Masters CJ (1974) On the association of glycolytic components in skeletal muscle extracts. Biochim Biophys Acta 358:193–207

    Google Scholar 

  • Clarke FM, Stephan P, Huxham G, Hamilton D, Morton DJ (1984) Metabolic dependence of glycolytic enzyme binding in rat and sheep heart. Eur J Biochem 138:643–649

    Google Scholar 

  • Clegg JS, Jackson SA (1989) Longterm anoxia in Artemia-cysts. J Exp Biol 147:539–543

    Google Scholar 

  • Cloud P (1983) The biosphere. Sci Am 249:132–144

    Google Scholar 

  • Cohen P (1980) Recently discovered systems of enzyme regulation by reversible phosphorylation. Elsevier, North Holland Biomed Press, Amsterdam

    Google Scholar 

  • Cole GA (1983) Textbook of limnology. Mosby, London

    Google Scholar 

  • Coleman N (1973) The oxygen consumption of Mytilus edulis in air. Comp Biochem Physiol 45A:393–402

    Google Scholar 

  • Coleman N (1976) The aerial respiration of Modiolus modiolus. Comp Biochem Physiol 54A:401–406

    Google Scholar 

  • Coles GC (1970) Some biochemical adaptations of the swamp worm Alma emini to low oxygen levels in tropical swamps. Comp Biochem Physiol 34:481–489

    Google Scholar 

  • Collicutt JM, Hochachka PW (1977) The anaerobic oyster heart: Coupling of glucose and aspartate fermentation. J Comp Physiol 115:147–157

    Google Scholar 

  • Dales RP (1958) Survival of anaerobic periods by two intertidal polychaetes, Arenicola marina L. and Owenia fusiformis Delle Chiaje. J Mar Biol Ass UK 37:521–529

    Google Scholar 

  • van Dam L (1938) On the utilization of oxygen and regulation of breathing in some aquatic animals. Ph.D. Thesis. Groningen, Netherlands 143 pp

    Google Scholar 

  • Davis JG, Slater WK (1928a) XLIV. The aerobic and anaerobic metabolism of the common cockroach (Periplaneta orientalis). Biochem J 22:331–337

    Google Scholar 

  • Davis JG, Slater WK (1928b) XLV. The anaerobic metabolism of the earthworm (Lumbricus terrestris). Biochem J 22:338–343

    Google Scholar 

  • DeFur PL, Mangum CP (1979) The effects of environmental variables on the heart rates of invertebrates. Comp Biochem Physiol 62A:283–294

    Google Scholar 

  • Dejours P (1975) Principles comparative respiratory physiology. Elsevier, New York

    Google Scholar 

  • Dejours P (1981) Mount Everest and beyond: breathing air. In: Taylor CR, Johansen K, Bolis L (eds) A companion to animal physiology. Cambridge University Press, Cambridge, pp 17–30

    Google Scholar 

  • Dejours P, Beekenkamp H (1977) Crayfish respiration as a function of water oxygenation. Respir Physiol 30:241–251

    Google Scholar 

  • Dethlefsen V, von Westernhagen H (1983) Oxygen deficiency and effects on bottom fauna in the eastern German Bight 1982. Meeresforschung. Hamburg 30:42–53

    Google Scholar 

  • de Zwaan A (1983) Carbohydrate catabolism in bivalves. In Hochachka PW (ed) The Mollusca: Metabolic biochemistry and molecular biomechanics. Vol 1:138–175. Academic, London

    Google Scholar 

  • de Zwaan A (1991) Molluscs. In: Bryant C (ed) Metazoen life without oxygen. Chapman and Hall, London, pp 186–217

    Google Scholar 

  • de Zwaan A, Dando PR (1984) Phosphoenolpyruvate-pyruvate metabolism in bivalve molluscs. Molec Physiol 5:285–310

    Google Scholar 

  • de Zwaan A, van Marrewijk WJA (1973) Anaerobic glucose degradation in the sea mussel, Mytilus edulis L. Comp Biochem Physiol 44B:429–439

    Google Scholar 

  • de Zwaan A, Putzer V (1985) Metabolic adaptations of intertidal invertebrates to environmental hypoxia (a comparison of environmental hypoxia to exercise hypoxia). In: laverack MS (ed) Physiological adaptations of marine animals. Vol 39, pp 33–62 Symposia of the Society of Experimental Biology. The Company of Biologists Limited, University of Cambridge

    Google Scholar 

  • de Zwaan A, Skjoldal HR (1979) Anaerobic energy metabolism of the scavenging isopod Cirolana borealis (Lilljeborg). J Comp Physiol 129:327–331

    Google Scholar 

  • de Zwaan A, Wijsmann TCM (1976) Anaerobic metabolism in bivalvia (mollusca). Characteristics of anaerobic metabolism. Comp Biochem Physiol 54B:313–324

    Google Scholar 

  • de Zwaan A, Zandee DI (1972) Body distribution and seasonal changes in the glycogen content of the common sea mussel Mytilus edulis. Comp Biochem Physiol 43A:53–58

    Google Scholar 

  • de Zwaan A, Zurburg W (1981) The formation of strombine in the adductor muscle of the sea mussel Mytilus edulis L. Mar Biol Lett 2:179–192

    Google Scholar 

  • de Zwaan A, Mohamed AM, Geraerts W (1976) Glycogen degradation and the accumulation of compounds during anaerobiosis in the fresh water snail Lymnea stagnalis. Neth J Zool 26:549–557

    Google Scholar 

  • de Zwaan A, Thompson RJ, Livingstone DR (1980) Physiological and biochemical aspects of the valve snap and valve closure responses in the giant scallop Placopecten magellanicus. II. Biochemistry. J Comp Physiol 137:105–114

    Google Scholar 

  • de Zwaan A, Holwerda DA, Veenhof PR (1981) Anaerobic malate metabolism in mitochondria of the sea mussel Mytilus edulis L. Mar Biol Lett 2:131–140

    Google Scholar 

  • de Zwaan A, de Bont AMT, Zurburg W, Bayne BL, Livingstone DR (1983a) On the role of strombine formation in the energy metabolism of adductor muscle of a sessile bivalve. J Comp Physiol 149:557–563

    Google Scholar 

  • de Zwaan A, de Bont AMT, Hemelraad J (1983b) The role of phosphoenolpyruvate carboxykinase in the anaerobic metabolism of the sea mussel Mytilus edulis L. J Comp Physiol 153B:267–274

    Google Scholar 

  • Dieringer N, Koester J, Weiss KR (1978) Adaptive changes in heart rate of Aplysia californica. J Comp Physiol 123:11–21

    Google Scholar 

  • DiTullio NW, Berkoff CE, Blank B, Kostos V, Stack EJ, Saunders HL (1974) 3-Mercaptopicolinic acid, an inhibitor of gluconeogenesis. Biochem J 138:387–394

    Google Scholar 

  • Doumen C, Ellington WR (1987) Isolation and characterization of a taurine-specific opine dehydrogenase from the pedicles of the brachiopod, Glottidea pyramidata. J exp Zool 243:25–31

    Google Scholar 

  • Dugal LP, Fortier G (1941) Le métabolisme anaerobique chez les mollusques. II. Variations du calcium et de l'acide lactique chez les huitres. Ann de l'ACFAS 7:112

    Google Scholar 

  • Ebberink RHM (1982) Control of adductor muscle phosphofructokinase activity in the sea mussel Mytilus edulis during anaerobiosis. Mol Physiol 2:345–355

    Google Scholar 

  • Ebberink RHM, Salimans M (1982) Control of glycogen phosphorylase activity in the posterior adductor muscle of the sea mussel Mytilus edulis. J Comp Physiol 148:27–33

    Google Scholar 

  • Ebberink RHM, Zurburg W, Zandee DI (1979) The energy demand of the posterior adductor muscle of Mytilus edulis in catch during exposure to air. Mar Biol Lett 1:23–31

    Google Scholar 

  • Eberlee JC, Storey JM, Storey KB (1983) Anaerobiosis, recovery from anoxia, and the role of strombine and alanopine in the oyster Crassostrea virginica. Can J Zool 61:2682–2687

    Google Scholar 

  • Ehrhardt M, Wenk A (1984) Wind pattern and hydrogen sulfide in shallow waters of the western Baltic Sea, a cause and effect relationship? Meeresforschung Hamburg 30:101–110

    Google Scholar 

  • Ellington WR (1982) Metabolism at the pyruvate branch point in the radula retractor muscle of the whelk, Busycon contrarium. Can J Zool 60:2973–2977

    Google Scholar 

  • Ellington WR (1983a) The recovery from anaerobic metabolism in invertebrates. J exp Zool 228:431–444

    Google Scholar 

  • Ellington WR (1983b) Phosphorous nuclear magnetic resonance studies of energy metabolism in molluscan tissues: Effect of anoxia and ischemia on the intracellular pH and high energy phosphates in the ventricle of the whelk, Busycon contrarium. J Comp Physiol 153:159–166

    Google Scholar 

  • Ellington WR (1983c) The extent of intracellular acidification during anoxia in the catch muscles of two bivalve molluscs. J Exp Zool 227:313–317

    Google Scholar 

  • Ellington WR (1989) Phosphocreatine represents a thermodynamic and functional improvement over other muscle phosphagens. J Exp Biol 143:177–194

    Google Scholar 

  • England WR, Baldwin J (1983) Anaerobic energy metabolism in the tail musculature of the Australian yabby Cherax destructor (Crustacea, Decapoda, Parastacidae): Role of phosphagens and anaerobic glycolysis during escape behaviour. Physiol Zool 56:614–622

    Google Scholar 

  • Englisch H (1989) Die Regulation des Energiestoffwechsels bei fakultativ anaeroben Evertebraten: Untersuchungen an Arenicola marina L. unter spezieller Berücksichtigung von Eigenschaften und Bedeutung der Pyruvatkinase. Ph.D. Thesis, University of Münster, Germany

    Google Scholar 

  • Englisch H, Opalka B, Zebe E (1982) The anaerobic metabolism of the larvae of the midge Chaoborus crystallinus. Insect Biochem 12:149–155

    Google Scholar 

  • Fairbairn D (1970) Biochemical adaptation and loss of genetic capacity in helminth parasites. Biol Rev 45:29–72

    Google Scholar 

  • Falkowski PG, Hopkins TS, Walsh JJ (1980) An analysis of factors affecting oxygen depletion in the New York Bight. J mar Res 38:479–506

    Google Scholar 

  • Famme P, Knudsen J (1984) Total heat balance study of anaerobiosis in Tubifex tubifex (Müller). J Comp Physiol B 154:587–591

    Google Scholar 

  • Famme P, Knudsen J, Hansen ES (1981) The effect of oxygen on the aerobic-anaerobic metabolism of the marine bivalve Mytilus edulis. Mar Biol Lett 2:345–351

    Google Scholar 

  • Felbeck H (1980) Investigations on the role of amino acids in anaerobic metabolism of the lugworm Arenicola marina L. J Comp Physiol 137:183–192

    Google Scholar 

  • Felbeck H, Grieshaber MK (1980) Investigations on some enzymes involved in the anaerobic metabolism of amino acids of Arenicola marina L. Comp Biochem Physiol 66B:205–213

    Google Scholar 

  • Fields JHA (1976) A dehydrogenase requiring alanine and pyruvate as substrates from oyster adductor muscle. Fed Proc Fedn Am Socs exp Biol 37:1687

    Google Scholar 

  • Fields JHA, Hochachka PW (1981) Purification and properties of alanopine dehydrogenase from the adductor muscle of the oyster Crassostrea gigas (Mollusca, Bivalvia). Eur J Biochem 114:615–621

    Google Scholar 

  • Fields JHA, Quinn JF (1981) Some theoretical considerations on the cytosolic redox balance during anaerobiosis in marine invertebrates. J theor Biol 88:35–45

    Google Scholar 

  • Fiore GB, Nicchitta CV, Ellington WR (1984) High performance liquid chromatographic separation and quantification of alanopine and strombine in crude tissue extracts. Analyst Biochem 139:413–417

    Google Scholar 

  • Frey H (1990) Stratification during periods of oxygen deficiency in the German Bight during the summers from 1981 to 1983: a comparison with the long-term variation in stratification. Meeresforschung Hamburg 32:306–328

    Google Scholar 

  • Gäde G (1975) Anaerobic metabolism of the common cockle, Cardium edule. I. The utilization of glycogen and accumulation of multiple end products. Arch internat Physiol Biochim 83:879–886

    Google Scholar 

  • Gäde G (1980a) Biological role of octopine formation in marine molluscs. Mar Biol Lett 1:121–135

    Google Scholar 

  • Gäde G (1980b) The energy metabolism of the foot muscle of the jumping cockle, Cardium tuberculatum: sustained anoxia versus muscular activity. J Comp Physiol 137:177–182

    Google Scholar 

  • Gäde G (1981) Energy production during swimming in the adductor muscle of the bivalve Lima hians: comparison with data from other bivalve molluscs. Physiol Zool 54:400–406

    Google Scholar 

  • Gäde G (1983a) Energy metabolism of arthropods and mollusks during environmental and functional anaerobiosis. J exp Zool 228:415–429

    Google Scholar 

  • Gäde G (1983b) Mode of energy production during environmental and functional hypoxia in the nemertean Cerebratulus lacteus. Am Zool 23: Abstract 65

    Google Scholar 

  • Gäde G (1984) Effects of oxygen deprivation during anoxia and muscular work on the energy metabolism of the crayfish, Orconectes limosus. Comp Biochem Physiol 77A:495–502

    Google Scholar 

  • Gäde G (1988) Energy metabolism during anoxia and recovery in shell adductor and foot muscle of the gastropod mollusc Haliotis lamellosa: Formation of the novel anaerobic end product tauropine. Biol Bull 175:122–131

    Google Scholar 

  • Gäde G, Grieshaber MK (1986) Pyruvate reductases catalyze the formation of lactate and opines in anaerobic invertebrates. Comp Biochem Physiol 83B:255–272

    Google Scholar 

  • Gäde G, Head EJH (1979) A rapid method for the purification of octopine dehydrogenase for the determination of cell metabolites. Experientia 35:304–305

    Google Scholar 

  • Gäde G, Zebe E (1973) Über den Anaerobiosestoffwechsel von Molluskenmuskeln. J Comp Physiol 85:291–301

    Google Scholar 

  • Gäde G, Wilps H, Kluytmans JHFM, de Zwaan A (1975) Glycogen degradation and end products of anaerobic metabolism in the fresh water bivalve Anodonta cygnea. J Comp Physiol 104:79–85

    Google Scholar 

  • Gäde G, Weeda E, Gabbot PA (1978) Changes in the level of octopine during escape responses of the scallop. Pecten maximus (L.). J Comp Physiol 124B:121–127

    Google Scholar 

  • Gäde G, Carlsson KH, Meinardus G (1984) Energy metabolism in the foot of the marine gastropod Nassa mutabilis during environmental and functional anaerobiosis. Mar Biol 80:49–56

    Google Scholar 

  • Gamble JC (1971) The responses of the marine amphipods Corophium arenarium and C. volutator to gradients and to choices of different oxygen concentrations. J Exp Biol 54:275–290

    Google Scholar 

  • Gameson ALH, Griffith SD (1959) Six months' oxygen records for a polluted stream. The Water and Waste Treatment Journal, January/February, pp 198–201

    Google Scholar 

  • Garber AJ, Karl IE, Kipnis DM (1976) Alanine and glutamine synthesis and release from skeletal muscle. II. The precursor role of amino acids in alanine and glutamine synthesis. J Biol Chem 251:836–843

    Google Scholar 

  • Garey WF, Rahn H (1970) Gas tensions in tissues of trout and carp exposed to diurnal changes in oxygen tensions of the water. J exp Biol 52:575–582

    Google Scholar 

  • Gerlach SA (1984) Oxygen depletion 1980–1983 in coastal waters of the Federal Republic of Germany. First report of the working group “Eutrophication of the North Sea and the Baltic”. Ber Inst Meeresk Univ Kiel 130:1–87

    Google Scholar 

  • Giere O (1992) Benthic life in sulfidic zones of the sea-ecological and structural adaptations to a toxic environment. Verh Dtsch Zool Ges 85.2:77–93

    Google Scholar 

  • Gilmour D (1941) Anaerobic metabolism in the larvae of Tenebrio molitor L.: gaseous metabolism and changes in glycogen, sugar, fat and lactic acid. J Cell Comp Physiol 18:93–100

    Google Scholar 

  • Glaister D, Kerly M (1936) The oxygen consumption and carbohydrate metabolism of the retractor muscle of the foot of Mytilus edulis. J Physiol 87:56–66

    Google Scholar 

  • Gnaiger E (1983) Heat dissipation and energetic efficiency in animal anoxibiosis: economy contra power. J exp Zool 228:471–490

    Google Scholar 

  • Gnaiger E, Staudigl I (1987) Aerobic metabolism and physiological responses of aquatic oligochaetes to environmental anoxia: heat dissipation, oxygen consumption, feeding and defecation. Physiol Zool 60:659–677

    Google Scholar 

  • Gnaiger E, Shick JM, Widdows J (1989) Metabolic microcalorimetry and respirometry of aquatic animals. In: Bridges CR, Butler PJ (eds) Techniques in comparative respiratory physiology. An experimental approach. Soc Exp Biol Seminar Series. Cambridge University Press, London, pp 113–135

    Google Scholar 

  • Gordon MS (1960) Anaerobiosis in marine sandy beaches. Science 132:616–617

    Google Scholar 

  • Goumard G, Cuny M, Sripati CE, Hayes DH (1990) Monovalent cation-dependent reversible phosphorylation of a 40S ribosomal subunit protein in growth-arrested Tetrahymena: correlation with changes in intracellular pH. FEBS Lett 262:335–338

    Google Scholar 

  • Graham RA, Ellington WR (1985) Phosphorous nuclear magnetic responance studies of energy metabolism in molluscan tissues. Intracellular pH change and the qualitative nature of anaerobic end products. Physiol Zool 58:478–490

    Google Scholar 

  • Grieshaber MK (1976) An enzymatic method for the estimation of octopine. Anal Biochem 74:600–603

    Google Scholar 

  • Grieshaber MK (1978) Breakdown and formation of high-energy phosphates and octopine in the adductor muscle of the scallop, Chlamys opercularis (L.) during escape swimming and recovery. J Comp Physiol 126:269–276

    Google Scholar 

  • Grieshaber MK, Gäde G (1976a) The biological role of octopine in the squid, Loligo vulgaris (Lamarck). J Comp Physiol 108:225–232

    Google Scholar 

  • Grieshaber MK, Gäde G (1976b) Die biologische Bedeutung des Octopins bei Mollusken. Verh Dtsch Zool Ges 69:222

    Google Scholar 

  • Grieshaber MK, Gäde G (1977) Energy supply and the formation of octopine in the adductor muscle of the scallop, Pecten jacobaeus. Comp Biochem Physiol 58B:249–252

    Google Scholar 

  • Grieshaber MK, Hardewig I (1993) Adjustments to hypoxia in invertebrates. In: Scheid P (ed) Funktionsanalyse biologischer Systeme. Mainzer Akademie der Wissenschaften 23:327–337

    Google Scholar 

  • Grieshaber MK, Kreutzer U (1986) Opine formation in marine invertebrates. Zool Beitr N F 30:205–229

    Google Scholar 

  • Grieshaber MK, Zebe E (1978) Die Bildung von Octopin bei Chlamys opercularis und bei Sipunculus nudus. Verh Dtsch Zool Ges 71:266

    Google Scholar 

  • Grieshaber MK, Kronig E, Koormann R (1978) A photometric estimation of phospho-L-arginine, L-arginine and octopine using homogenous octopine dehydrogenase isoenzyme II from the squid, Loligo vulgaris Lam. Hoppe-Seyler's Z Physiol Chem 359:133–136

    Google Scholar 

  • Grieshaber MK, Hardewig I, Kreutzer U, Schneider A, Völkel S (1992) Hypoxia and sulfide tolerance in some marine invertebrates. Verh Dtsch Zool Ges 85.2:55–76

    Google Scholar 

  • Gruner B, Zebe E (1978) Studies on the anaerobic metabolism of earthworms. Comp Biochem Physiol 60B:441–445

    Google Scholar 

  • Hammen CS (1969) Metabolism of the oyster, Crassostrea virgini ca. Am Zool 9:309–318

    Google Scholar 

  • Hammen CS, Lum SC (1966) Fumarate reductase and succinate dehydrogenase activities in bivalve molluscs and brachiopods. Comp Biochem Physiol 19:775–781

    Google Scholar 

  • Hand SC (1993) pHi and anabolic arrest during anoxia in Artemia franciscana embryos. In: Hochachka PW, Lutz PL, Sick T, Rosental M, van den Thillart G (eds) Surviving hypoxia. Mechanism of control and adaptation. CRC Press, Boca Raton

    Google Scholar 

  • Hand SC, Gnaiger E (1988) Anaerobic dormancy quantified in Artemia embryos: A calorimetric test of the control mechanism. Science 239:1425–1427

    Google Scholar 

  • Hardewig I, Addink ADF, Grieshaber MK, Pörtner HO, van den Thillart G (1991a) Metabolic rates at different oxygen levels determined by direct and indirect calorimetry in the oxycon-former Sipunculus nudus. J exp Biol 157:143–160

    Google Scholar 

  • Hardewig I, Kreutzer U, Pörtner HO, Grieshaber MK (1991b) The role of phosphofructokinase in glycolytic control in the facultative anaerobe Sipunculus nudus. J Comp Physiol 161:581–589

    Google Scholar 

  • Harms E (1972) Alkohol-Dehydrogenase aus Larven der Zuckmücke Chironomus tentans. Isolierung und Charakterisierung. Ph.D. Thesis, Freie Universität Berlin, Germany

    Google Scholar 

  • Harper Jr DE, McKinney LA, Salzer RR, Case RJ (1981) The occurrence of hypoxic bottom water off the upper Texas coast and its effects on the benthic biota. Mar Sci 24:53–79

    Google Scholar 

  • Helm HM, Trueman ER (1967) The effect of exposure on the heart rate of the mussel, Mytilus edulis. Comp Biochem Physiol 21:171–177

    Google Scholar 

  • Herreid II CF (1980) Hypoxia in invertebrates. Comp Biochem Physiol 67A:311–320

    Google Scholar 

  • Hers HG, van Schaftingen E (1982) Fructose-2,6-bisphosphate two years after it's discovery. Biochem J 206:1–12

    Google Scholar 

  • Hershey JWB (1991) Translational control in mammalian cells. Annu Rev Biochem 60:717–755

    Google Scholar 

  • Hickel W, Bauerfeind E, Niermann U, von Westernhagen H (1989) Oxygen deficiency in the south-eastern North Sea: sources and biological effects. Ber Biol Anst Helgoland 4:1–148

    Google Scholar 

  • Hildebrandt JP (1992) External CO2 levels influence energy yielding metabolic pathways under hypoxia in the leech, Hirudo medicinalis. J exp Zool 261:379–386

    Google Scholar 

  • Hochachka PW (1982) Metabolic arrest as a mechanism of protection against hypoxia, In: Wauquier A, Borgers M, Amery WK (eds) Protection of tissues against hypoxia. Elsevier Press, Amsterdam, pp 1–12

    Google Scholar 

  • Hochachka PW (1986) Defense strategies against hypoxia and hypothermia. Science 231:234–241

    Google Scholar 

  • Hochachka PW, Guppy M (1987) Metabolic arrest and the control of biological time. Harvard University Press, Cambridge Mass

    Google Scholar 

  • Hochachka PW, Mustafa T (1972) Invertebrate facultative anaerobiosis. Science 178:1056–1060

    Google Scholar 

  • Hochachka PW, Fields J, Mustafa T (1973) Animal life without oxygen: Basic biochemical mechanisms. Am Zool 13:543–555

    Google Scholar 

  • Hochachka PW, Hartline PH, Fields JHA (1977) Octopine as an end product of anaerobic glycolysis in the chambered nautilus. Science 195:75–74

    Google Scholar 

  • Hoeger U, Wenning A, Greisinger U (1989) Ion homeostasis in the leech: contribution of organic anions. J exp Biol 147:43–51

    Google Scholar 

  • Hoffmann KH (1981) Phosphagens and phosphokinases in Tubifex sp. J Comp Physiol 143:237–243

    Google Scholar 

  • Hoffmann KH, Seuss J, Hipp E (1983) Anpassungen im Energiehaushalt von Tubifex sp (Oligochaeta) an eine fakultative anaerobe Lebensweise. Verhandlungen der Gesellschaft für Ökologie 10:557–562

    Google Scholar 

  • Hofman GE, Hand SC (1990) Arrest of cytochrome-c oxidase synthesis coordinated with catabolic arrest in dormant Artemia embryos. Am J Physiol 258:R1184–R1191

    Google Scholar 

  • Hofman GE, Hand SC (1992) Comparison of messenger RNA pools in active and dormant Artemia franciscana embryos: evidence for translational control. J exp Biol 164:103–116

    Google Scholar 

  • Holst E, Zebe E (1986) Volatile fatty acid excretion during anaerobiosis in the lugworm, Arenicola marina. Comp Biochem Physiol 83A:189–196

    Google Scholar 

  • Holwerda DA, de Zwaan A (1979) Fumarate reductase of Mytilus edulis L. Mar Biol Lett 1:33–40

    Google Scholar 

  • Holwerda DA, de Zwaan A (1980) On the role of fumarate reductase in anaerobic carbohydrate catabolism of Mytilus edulis L. Comp Biochem Physiol 67B:447–453

    Google Scholar 

  • Holwerda DA, Kruitwagen ECJ, de Bont AMT (1981) Regulation of pyruvate kinase and phosphoenolpyruvate carboxykinase activity during anaerobiosis in Mytilus edulis L. Mol Biol 1:165–171

    Google Scholar 

  • Holwerda DA, Veenhof PR, van Heugten HAA, Zandee DI (1983) Modification of mussel pyruvate kinase during anaerobiosis and after temperature acclimation. Mol Physiol 3:225–234

    Google Scholar 

  • Holwerda DA, Veenhof PR, De Zwaan A (1984) Physiological and biochemical investigations of the ecological relevance of anaerobiosis in bivalves. I. The changes in activity of mussel adductor muscle and mantle pyruvate kinase during aerial exposure and reimmersion. Mar Biol Lett 5:185–190

    Google Scholar 

  • Idler DR, Fagerlund UHM (1953) Steam volatile fatty acids from a marine tube worm. Prog Rep Fish Res Bd Canada 97:6–8

    Google Scholar 

  • Jenkins RJF (1991) The early environment. In: Bryant CH (ed) Metazoan life without oxygen. Chapman and Hall, London, pp 38–64

    Google Scholar 

  • Jones HD (1983) The circulatory systems of gastropods and bivalves. In: Saleuddin AS, Wilbur KM (eds) The Mollusca: Physiology, Part 2. Vol 5, pp 189–238, Academic Press, New York

    Google Scholar 

  • Jones JD (1955) Observations on the respiratory physiology and on the haemoglobin of the polychaete genus Nephthys, with special reference to N. hombergii. J Exp Biol 32:110–125

    Google Scholar 

  • Jones JD (1961) Aspects of respiration in Planorbis corneus L. and Lymnaea stagnalis L. (Gastropoda = Pulmonata). Comp Biochem Physiol 4:1–29

    Google Scholar 

  • Jørgensen BB (1988) Ecology of the sulphur cycle: oxidative pathways in sediments. In: Cole JA, Ferguson SJ (eds) The nitrogen and sulphur cycles. Cambridge University Press, Cambridge, pp 31–63

    Google Scholar 

  • Jørgensen D, Bourne G, Burnett L, DeFur P, NcMahon B (1982) Circulatory function during hypoxia in the Dungeness crab Cancer magister. Am Zool 22:958/595

    Google Scholar 

  • Jürgens KD (1989) Strategien der Anpassung des Sauerstofftransportsystems von Säugetieren an das Leben in großen Höhen. Naturwissenschaften 76:410–415

    Google Scholar 

  • Juretschke HP, Kamp G (1990) Influence of intracellular pH on reduction of energy metabolism during hypoxia in the lugworm Arenicola marina. J Exp Zool 256:255–263

    Google Scholar 

  • Kamp G (1986) Features of glycogen phosphorylase from the body wall musculature of the lugworm Arenicola marina and the mode of activation during anoxia. Biol Chem Hoppe-Seyler 367:109–117

    Google Scholar 

  • Kamp G, Juretschke HP (1987) An in vivo 31P-NMR study of the possible regulation of glycogen phosphorylase a by phosphagen via phosphate in the abdominal muscle of the shrimp Crangon crangon. Biochim Biophys Acta 929:121–127

    Google Scholar 

  • Kamp G, Juretschke HP (1989) Hypercapnic and hypocapnic hypoxia in the lugworm Arenicola marina: a 31P NMR study. J. Exp Zool 252:219–227

    Google Scholar 

  • Kasvinsky PJ, Meyer WC (1977) The effect of pH and temperature on the kinetics of native and altered glycogen phosphorylase. Arch Biochem Biophys 181:616–631

    Google Scholar 

  • Kirsten E, Kirsten R, Arese P (1963) Das Verhalten von freien Aminosäuren, energiereichen Phosphorsäure-Verbindungen und einigen Glycolyse-und Tricarbonsäurecyclus-Substraten in Muskeln von Locusta migratoria bei der Arbeit. Biochem Z 337:167–178

    Google Scholar 

  • Kita K, Takamiya S, Furushima R, Ma YC, Suzuki H, Ozawa T, Oya H (1988a) Electron transfer complexes of Ascaris suum muscle mitochondria. III. Composition and fumarate reductase activity of complex II. Biochim Biophys Acta 935:130–140

    Google Scholar 

  • Kita K, Takamiya S, Furushima R, Ma YC, Oya H (1988b) Complex II is a major component of the respiratory chain in the muscle mitochondria of Ascaris suum with high fumarate reductase activity. Comp Biochem Physiol 89B:31–34

    Google Scholar 

  • Kluytmans JH, Zandee DI (1983) Comparative study of the formation and excretion of anaerobic fermentation products in bivalves and gastropods. Comp Biochem Physiol 75B:729–732

    Google Scholar 

  • Kluytmans JH, Veenhof PR, De Zwaan A (1975) Anaerobic production of volatile fatty acids in the sea mussel Mytilus edulis L. J Comp Physiol 104:71–78

    Google Scholar 

  • Kluytmans JH, Zandee DI, Zurburg W, Pieters H (1980) The influence of seasonal changes on energy metabolism in Mytilus edulis (L.). III. Anaerobic energy metabolism. Comp Biochem Physiol 67B:307–315

    Google Scholar 

  • Klingenberg M (1964) Reversibility of energy transformations in the respiratory chain. Angew Chem intern Edit 3:54–61

    Google Scholar 

  • Klingenberg M, von Häfen H (1963) Wege des Wasserstoffs in Mitochondrien. I. Die Wasserstoffübertragung von Succinat zu Acetoacetat. Biochem Z 337:120–145

    Google Scholar 

  • Kmetec E, Bueding E (1961) Succinic and reduced diphosphopyridine nucleotide oxidase systems of Ascaris muscle. J Biol Chem 236:584–591

    Google Scholar 

  • Köhler P (1988) Nutrition and metabolism. In: Mehlhorn H (ed) Parasitology in focus. Springer, Heildelberg, pp 412–453

    Google Scholar 

  • Köhler P (1991) Energy metabolism in helminths. In: Woakes AJ, Grieshaber MK, Bridges CR (eds) Physiological strategies for gas exchange and metabolism. Cambridge University Press, Cambridge, pp 15–34

    Google Scholar 

  • Koormann R, Grieshaber MK (1980) Investigations on the energy metabolism and on octopine formation of the common whelk, Buccinum undatum L., during escape and recovery. Comp Biochem Physiol 65B:543–547

    Google Scholar 

  • Korycan SA, Storey KB (1983) Organ-specific metabolism during anoxia and recovery from anoxia in the cherrystone clam, Mercenaria mercenaria. Can J Zool 61, 4:2674–2681

    Google Scholar 

  • Kreutzer U (1987) Untersuchungen über die Regulation der Bildung glykolytischer Endprodukte in marinen Invertebraten. Ph.D. Thesis, Heinrich-Heine-Universität Düsseldorf, Germany

    Google Scholar 

  • Kreutzer U, Siegmund B, Grieshaber MK (1985) Role of coupled substrates and alternative end products during hypoxia tolerance in marine invertebrates. Mol Physiol 8:371–392

    Google Scholar 

  • Kreutzer U, Siegmund RB, Grieshaber MK (1989) Parameters controlling opine formation during muscular activity and environmental hypoxia. J Comp Physiol 159B:617–628

    Google Scholar 

  • Kröncke I (1985) Makrofaunahäufigkeit in Abhängigkeit von der Sauerstoffkonzentration in Bodenwasser der östlichen Nordsee. Thesis MS, Universität Hamburg, pp 127

    Google Scholar 

  • Lawson JWR, Veech RL (1979) Effects of pH and free Mg2+ on the Keq creatine kinase reaction and other phosphate hydrolyses and transfer reactions. J Biol Chem 254:6528–6537

    Google Scholar 

  • Laybourne RC (1974) Collision between a vulture and an aircraft at an altitude of 37,000 feet. Wilson Bull 86:461–462

    Google Scholar 

  • Lazou A, Michaelidis B, Beis I (1989) Evidence for glycolytic enzyme binding during anaerobiosis of the foot muscle of Patella caerulea (L.). J Comp Physiol B 158:771–777

    Google Scholar 

  • Linzen B, Gallowitz P (1975) Enzyme activity patterns in muscles of the lycosid spider, Cupiennius salei. J Comp Physiol 96:101–109

    Google Scholar 

  • Livingstone DR (1982) Energy production in the muscle tissues of different kinds of molluscs. In: Addink ADF, Spronk N (eds) Exogenous and endogenous influences on metabolic and neural control. Pergamon Press, Oxford, pp 257–274

    Google Scholar 

  • Livingstone DR (1983) Invertebrate and vertebrate pathways of anaerobic metabolism: evolutionary considerations. J Geol Soc London 140:27–37

    Google Scholar 

  • Livingstone DR, de Zwaan A (1983) Carbohydrate metabolism of gastropods. In Hochachka PW (ed) The Mollusca Vol 1, Metabolic biochemistry and molecular biomechanics. Academic Press, New York, pp 177–242

    Google Scholar 

  • Livingstone DR, de Zwaan A, Thompson RJ (1981) Aerobic metabolism, octopine production and phosphoarginine as sources of energy in the phasic and catch adductor muscles of the giant scallop Placopecten magellanicus during swimming and the subsequent recovery period: comments on the role of the octopine pathway in some marine invertebrates. Comp Biochem Physiol 70B:35–45

    Google Scholar 

  • Livingstone DR, de Zwaan A, Leopold M, Marteijn E (1983) Studies on the phylogentic distribution of pyruvate oxidoreductases. Biochem Syst Ecol 11:415–425

    Google Scholar 

  • Livingstone DR, Stickle WB, Kapper MA, Wang S, Zurburg W (1990) Further studies on the phylogenetic distribution of pyruvate oxidoreductase activities. Comp Biochem Physiol 97B:661–666

    Google Scholar 

  • Ma YC, Kita K, Hamajima F, Oya H (1987) Isolation and properties of complex II (succinate-ubichinone reductase) in the mitochondria of Paragonimus westermani. Jap J Parasitology 36:107–117

    Google Scholar 

  • Mackie AM, Lasker R, Grant PT (1968) Avoidance reactions of a mollusc Buccinum undatum to saponine like surface-active substances in extracts of the star fish Asterias rubens and Marthasterias glacialis. Comp Biochem Physiol 26B:415–428

    Google Scholar 

  • Mangum CP, Burnett LE (1975) The extraction of oxygen by estuarine invertebrates. In: Vernberg FJ (ed) Physiological ecology of estuarine organisms. University of South Carolina Press, Columbia, pp 147–163

    Google Scholar 

  • Mangum C, von Winkle W (1973) Responses of aquatic invertebrates to declining oxygen conditions. Amer Zool 13:529–541

    Google Scholar 

  • Mangum DC (1980) oxygen anemone neuromuscular responses in anaerobic conditions. Science 208:1177–1178

    Google Scholar 

  • Masters CJ, Reid S, Dou M (1987) Glycolysis: new concepts in an old pathway. Mol Cell Biochem 76:3–14

    Google Scholar 

  • Matsushima O, Katayama H, Yamada K, Kado Y (1984) Occurrence of free D-alanine and alanine racemate activity in bivalve moluscs with special reference to intracellular osmoregulation. Mar Biol Lett 5:217–225

    Google Scholar 

  • McDonald DG, McMahon BR, Wood CM (1979) An analysis of acid-base disturbances in the haemolymph following strenuous activity in the Dungeness crab, Cancer magister. J Exp Biol 79:47–58

    Google Scholar 

  • McMahon BR (1988) Physiological responses to oxygen depletion in intertidal animals. Amer Zool 28:39–53

    Google Scholar 

  • McMahon BR, Burnett LE (1990) The crustacean open circulatory system: A reexamination. Physiol Zool 63:35–71

    Google Scholar 

  • McMahon BR, Wilkens JL (1975) Respiratory and circulatory responses to hypoxia in the lobster Homarus americaus. J exp Biol 62:637–655

    Google Scholar 

  • McMahon BR, Burggren WW, Wilkens JL (1974) Respiratory responses to long-term hypoxic stress in the crayfish Orconectes virilis. J exp Biol 60:195–206

    Google Scholar 

  • Mehlman B, von Brand T (1951) Further studies on the anaerobic metabolism of some fresh water snails. Biol Bull 100:199–205

    Google Scholar 

  • Meinardus G, Gäde G (1981) Anaerobic metabolism of the common cockle, Cardium edule-IV. Time dependent changes of metabolites in the foot and gill tissue induced by anoxia and electrical stimulation. Comp Biochem Physiol 70B:271–277

    Google Scholar 

  • Meinardus-Hager G, Gäde G (1986a) The pyruvate branchpoint in the anaerobic energy metabolism of the jumping cockle Cardium tuberculatum L. D-lactate formation during environmental anaerobiosis versus octopine formation during exercise. Exp Biol 145:91–110

    Google Scholar 

  • Meinardus-Hager G, Gäde G (1986b) The separate function of d-lactate-, octopine-, and alanopine dehydrogenases in the foot muscle of the jumping cockle Cardium tuberculatum during anaerobiosis. J Comp Physiol B156:873–881

    Google Scholar 

  • Meinardus-Hager G, Gabbott PA, Gäde G (1989) Regulatory steps of glycolysis during environmental anoxia and muscular work in the cockle, Cardium tuberculatum: control of low and high glycolytic flux. J Comp Physiol B159:195–203

    Google Scholar 

  • Meyerhof O, Lohmann K (1928) Über die natürlichen Guanidinophosphorsäuren (Phosphagene) in der quergestreiften Muskulatur. I. Das physiologische Verhalten der Phosphagene. Biochem Z 196:23–48

    Google Scholar 

  • Michaelidis B, Storey KB (1990) Influence of pH on the regulatory properties of aerobic and anoxi forms of pyruvate kinase in a marine whelk. J exp Zool 253:245–251

    Google Scholar 

  • Milne-Edwards H (1838) Recherches pour servir à l'histoire de la circulation du sang chez les Annélides. Annls Sci nat (Zool) Série 2, 10:193–221

    Google Scholar 

  • Morizawa K (1928) Über die Extraktstoffe von Octopus octopodia. Acta Schol Med Kyoto 10:285–298

    Google Scholar 

  • Morris S, Taylor AC (1983) Diurnal and seasonal variation in physico-chemical conditions within intertidal rock pools. Estuarine, Coastal and Shelf Science 17:339–355

    Google Scholar 

  • Morris S, Taylor AC (1985) The respiratory response of the intertidal prawn Palaemon elegans (Rathke) to hypoxia and hyperoxia. Comp Biochem Physiol 81A:633–639

    Google Scholar 

  • Nicchitta CV, Ellington WR (1983) Energy metabolism during air exposure and recovery in the high intertidal bivalve mollusc Geukensia demissa granosissima and the subtidal bivalve mollusc Modiolus squamosus. Biol Bull 165:708–722

    Google Scholar 

  • Nicchitta CV, Ellington WR (1984) Partial purification and characterization of a strombine dehydrogenase from the adductor muscle of the mussel Modiolus squamosus. Comp Biochem Physiol 77B:233–236

    Google Scholar 

  • Oeschger R (1990) Long-term anaerobiosis in sublittoral marine invertebrates from the Western Baltic Sea: Halicryptus spinulosus (Priapulida), Astarte borealis and Arctica islandica (Bivalvia). Mar Ecol Prog Ser 59:133–143

    Google Scholar 

  • Oeschger R, Storey KB (1990) Regulation of glycolytic enzymes in the marine invertebrate Halicryptus spinulosus (Priapulida) during environmental anoxia and exposure to hydrogen sulfide. Mar Biol 106:261–266

    Google Scholar 

  • Onnen T, Zebe E (1983) Energy metabolism in the tail muscle of the shrimp Crangon crangon during work and subsequent recovery. Comp Biochem Physiol 74A:833–838

    Google Scholar 

  • Oshino N, Sugano T, Oshino R, Chance B (1974) Mitochondrial function under hypoxic conditions: The steady states of cytochrome a+a3 and their relation to mitochondrial energy states. Biochim Biophys Acta 368:298–310

    Google Scholar 

  • Oya H, Kita K (1989) The physiological significance of complex II (succinate-ubiquinone reductase) in respiratory adaptation. In: Bennet EM, Behm C, Bryant C (eds) Comparative biochemistry of parasitic helminths. Chapman and Hall, London, pp 35–52

    Google Scholar 

  • Palmer LG, Li JHY, Lindemann B, Edelman IS (1982) Aldosterone control of the density of sodium channels in toad urinary bladder. J Membr Biol 64:91–102

    Google Scholar 

  • Pasteur ML (1861) Expériences et vues nouvelles sur la nature des fermentations. CR Acad Sci 52:1260–1264

    Google Scholar 

  • Patience RL, Thomas JD, Sterry PR (1983) Production and release of carboxylic acids during oxic and anoxic metabolism by the pulmonate snail Biomphalaria glabrata (Say). Comp Biochem Physiol 76B:253–262

    Google Scholar 

  • Pette D (1975) Some aspects of supramolecular organization of glycogenolytic and glycolytic enzymes in muscle. Acta histochemica, Suppl Vol XIV:47–68

    Google Scholar 

  • Phillips JW, McKinney RJW, Hird FJR, MacMillan DL (1977) Lactic acid formation in crustaceans and the liver function of the midgut gland questioned. Comp Biochem Physiol 56B:427–433

    Google Scholar 

  • Pionetti JM, Toulmond A (1980) Tide-related changes of volatile fatty acids in the blood of the lugworm, Arenicola marina (L.). Can J Zool 58:1723–1727

    Google Scholar 

  • Plaxton WC, Storey KB (1984a) Purification and properties of aerobic and anoxic forms of pyruvate kinase from the red muscle of the channeled whelk Busycotypus canaliculatum. Eur J Biochem 143:257–265

    Google Scholar 

  • Plaxton WC, Storey KB (1984b) Phosphorylation in vivo of red-muscle pyruvate kinase from the channeled whelk Busycotypus canaliculatum, in response to anoxic stress. Eur J Biochem 143:267–272

    Google Scholar 

  • Plaxton WC, Storey KB (1986) Glycolytic enzyme binding and metabolic control in anaerobiosis. J Comp Physiol 156B:635–440

    Google Scholar 

  • Pörtner HO (1982) Biochemische und physiologische Anpassungen an das Leben im marinen Sediment: Untersuchungen am Spritzwurm Sipunculus nudus L. Ph.D. Thesis, Heinrich-Heine-Universistät Düsseldorf, Germany

    Google Scholar 

  • Pörtner HO (1987a) Contributions of anaerobic metabolism to pH regulation in animal tissues: theory. J exp Biol 131:69–87

    Google Scholar 

  • Pörtner HO (1987b) Anaerobic metabolism and changes in the acid-base status: quantitative interrelationships and pH regulation in the marine worm Sipunculus nudus L. J exp Biol 131:89–105

    Google Scholar 

  • Pörtner HO (1989) The importance of metabolism in acid-base regulation and acid-base methodology. Can J Zool 67:3005–3017

    Google Scholar 

  • Pörtner HO (1993) Multicompartmental analyses of acid-base and metabolic homeostasis during anaerobiosis: invertebrate and lower vertebrate examples. In: Hochachka PW, Lutz PL, Rosenthal M, Sick, van den Thillardt G (eds) Surviving hypoxia: mechanisms of control and adaptation. CRC Press, Boca Raton (in press)

    Google Scholar 

  • Pörtner HO, Grieshaber MK (1993) Critical PO2 (s) in oxyconforming and oxyregulating animals: gas exchange, metabolic rate and the mode of energy production. In: Bicudo E (ed) The vertebrate gas transport cascade-Adaptations to environment and mode of life. CRC Press, Boca Raton, pp 330–357

    Google Scholar 

  • Pörtner HO, Surholt B, Grieshaber MK (1979) Recovery from anaerobiosis of the lugworm Arenicola marina L.: changes of metabolite concentrations in the body-wall musculature. J Comp Physiol 133:227–231

    Google Scholar 

  • Pörtner HO, Heisler N, Grieshaber MK (1983) Metabolic and respiratory processes in Sipunculus nudus during low tide. Abstracts Symposium European De Physiologie Comparée, Strasbourg

    Google Scholar 

  • Pörtner HO, Kreutzer U, Siegmund B, Heisler N, Grieshaber MK (1984a) Metabolic adaptation of the intertidal worm Sipunculus nudus to functional and environmental hypoxia. Mar Biol 79:237–247

    Google Scholar 

  • Pörtner HO, Grieshaber MK, Heisler N (1984b) Anaerobiosis and acid-base status in marine invertebrates: effect of environmental hypoxia on extracellular and intracellular pH in Sipunculus nudus-L. J Comp Physiol 155B:13–20

    Google Scholar 

  • Pörtner HO, Heisler M, Grieshaber MK (1984c) Anaerobiosis and acid-base status in marine invertebrates: a theoretical analysis of proton generation by anaerobic metabolism. J Comp Physiol 155:1–12

    Google Scholar 

  • Pörtner HO, Heisler N, Grieshaber MK (1985) Oxygen consumption and modes of energy production in the intertidal worm Sipunculus nudus L.: definition and characterization of the critical PO2 for an oxyconformer. Respir Physiol 59:361–377

    Google Scholar 

  • Pörtner HO, Vogeler S, Grieshaber MK (1986a) Recovery from anaerobiosis in the intertidal worm Sipunculus nudus. I. Restoration of aerobic, steady state energy metabolism. J Exp Biol 122:37–50

    Google Scholar 

  • Pörtner HO, Vogeler S, Grieshaber MK (1986b) Recovery from anaerobiosis in the intertidal worm Sipunculus nudus. II. Gas exchange and changes in the intra-and extracellular acid-base status. J Exp Biol 122:51–64

    Google Scholar 

  • Pörtner HO, Andersen NA, Heisler N (1991) Proton-equivalent ion transfer in Sipunculus nudus as a function of ambient oxygen tension: relationships with energy metabolism. J Exp Biol 156:21–39

    Google Scholar 

  • Prestwich KN (1983) Anaerobic metabolism in spiders. Physiol Zool 56:112–121

    Google Scholar 

  • Prestwich KN (1988) The constraints on maximal activity in spiders. J Comp Physiol 158B:449–456

    Google Scholar 

  • Pritchard AW, Eddy S (1979) Lactate formation in Callianassa californiensis and Upogebia pugettensis (Crustacea: Thalassinidea). Mar Biol 50:249–253

    Google Scholar 

  • Prosser CL, Brown Jr FA (1961) Comparative animal physiology. 2nd ed, Saunders, London

    Google Scholar 

  • Pugh LGCE (1957) Resting ventilation and alveolar air on Mt. Everest: with remarks on the relation of barometric pressure to altitude in mountains. J Physiol 135:590–610

    Google Scholar 

  • Ramaiah A (1974) Pasteur effect and phosphofructokinase. Curr Top Cell Regul 8:297–345

    Google Scholar 

  • Redecker B, Zebe E (1988) Anaerobic metabolism in aquatic insect larvae: studies on Chironomus thummi and Culex pipiens. J Comp Physiol 158B:307–315

    Google Scholar 

  • Reimers CE, Fischer KM, Merewether R, Smith KL, Jahnke RA (1986) Oxygen microprofiles measured in situ in deep ocean sediments. Nature 320:741–744

    Google Scholar 

  • Revsbech NP, Jørgensen BB (1986) Microelectrodes: Their use in microbiol ecology. In: Marshall KC (ed) Advances in microbial ecology. 9:293–352

    Google Scholar 

  • Robin Y (1964) Biological distribution of guanidines and phosphagens in marine annelida and related phyla from California, with a note on pluriphosphagens. Comp Biochem Physiol 12:347–367

    Google Scholar 

  • Rolleston FS (1972) A theoretical background to the use of measured concentrations of intermediates in study of the control of intermediary metabolism. Curr Top Cell Regul 5:47–75

    Google Scholar 

  • Ruby EG, Fox DL (1976) Anaerobic respiration in the polychaete Euzonus mucronata (Thoracophelia). Mar Biol 35:149–153

    Google Scholar 

  • Rüegg JC (1971) Smooth muscle tone. Physiol Rev 51:201–248

    Google Scholar 

  • Sato M, Gäde G (1986) Rhodoic acid dehydrogenase: a novel amino acid-linked dehydrogenase from muscle tissue of Haliotis-species. Naturwissenschaften 73:207–209

    Google Scholar 

  • Sato M, Sato Y, Tsuchiya Y (1982) Distribution of meso-alphaiminodipropionic acid and D-alphaiminopropioacetic acid in a variety of aquatic organisms. Nippon Suisan Gakkaishi 46:1411–1414

    Google Scholar 

  • Sato M, Takahara M, Kanno N, Sato Y, Ellington WR (1987) Isolation of a new opine, β-alanopine, from the extracts of the muscle of the marine bivalve mollusc, Scapharca broughtonii. Comp Biochem Physiol 88B:803–806

    Google Scholar 

  • Sato M, Suzuki S, Yasuda Y, Kawauchi H, Kanno N, Sato Y (1988) Quantitative HPLC analysis of acidic opines by phenylthiocarbamyl derivatization. Anal Biochem 174:623–627

    Google Scholar 

  • Saz HJ (1981) Energy metabolism of parasitic helminths: Adaptations to parasitism. Ann Rev Physiol 43:323–341

    Google Scholar 

  • Schell J, van Montagu M, de Beuckeleer M, de Block M, Depicker A, de Wilde M, Engler G, Genetello C, Hernalsteens JP, Holsters M, Seurinck J, Silva B, van Vliet F, Villarroel R (1979) Interactions and DNA transfer between Agrobacterium tumefaciens, the Ti-plasmid and the plant host. Proc R Soc London 204B:251–266

    Google Scholar 

  • Schiedek D (1991) Die Rolle des Phosphagens Glycocyaminphosphat im Energiestoffwechsel von Nephtys hombergii (Polychaeta). Verh Dtsch Zool Ges 84:424–425

    Google Scholar 

  • Schiedek D (1992) Untersuchungen zur Ökophysiologie von Marenzelleria viridis (Polychaeta): Stoffwechselreaktion auf Änderung der Umweltbedingungen. Verh Dtsch Zool Ges 85:37

    Google Scholar 

  • Schiedek D, Zebe E (1987) Functional and environmental anaerobiosis in the razor-clam Ensis directus (Mollusca: Bivalvia). Mar Biol 94:31–37

    Google Scholar 

  • Schneider A, Wiesner RJ, Grieshaber MK (1989) On the role of arginine kinase in insect flight muscle. Insect Biochem 19:471–480

    Google Scholar 

  • Schoffeniels E, Gilles R (1972) Ionenregulation and osmoregulation in Mollusca. In: florkin M, Scheer BT (eds) Chemical Zoology. Vol 7: Mollusca. Academic Press, New York, pp 393–420

    Google Scholar 

  • Schöttler U (1977) The energy-yielding oxidation of NADH by fumarate in anaerobic mitochondria of Tubifex sp. Comp Biochem Physiol 58B:151–156

    Google Scholar 

  • Schöttler U (1979) On the anaerobic metabolism of three species of Nereis (Annelida). Mar Ecol Prog Ser 1:249–254

    Google Scholar 

  • Schöttler U (1980) Der Energiestoffwechsel bei biotopbedingter Anaerobiose: Untersuchungen an Anneliden. Verh Dtsch Zool Ges 228–240

    Google Scholar 

  • Schöttler U (1982) An investigation on the anaerobic metabolism of Nephtys hombergii (Annelida: Polychaeta). Mar Biol 71:265–269

    Google Scholar 

  • Schöttler U (1983) Untersuchungen zur Bildung von Propionat aus Succinat in submitochondrialen Fraktionen aus dem Hautmuskelschlauch von Arenicola marina. Verh Dtsch Zool Ges 321

    Google Scholar 

  • Schöttler U (1986) Weitere Untersuchungen zum anaeroben Energiestoffwechsel des Polychaeten Arenicola marina. Zool Beitr NF 30:141–152

    Google Scholar 

  • Schöttler U (1989) Anaerobic metabolism in the lugworm Arenicola marina during low tide: the influence of developing reproductive cells. Comp Biochem Physiol 92A:1–7

    Google Scholar 

  • Schöttler U, Bennet EM (1991) Annelids. In: Bryant C (ed) Metazoan life without oxygen. Chapman and Hall, London, pp 165–185

    Google Scholar 

  • Schöttler U, Grieshaber MK (1988) Adaptation of the polychaete worm Scoloplos armiger to hypoxic conditions. Mar Biol 99:215–222

    Google Scholar 

  • Schöttler U, Schroff G (1976) Untersuchungen zum anaeroben Glykogenabbau bei Tubifex tubifex M. J Comp Physiol 108:243–253

    Google Scholar 

  • Schöttler U, Wienhausen G (1981) The importance of the phosphoenolpyruvate carboxykinase in the anaerobic metabolism of two marine polychaetes. In vivo investigations on Nereis virens and Arenicola marina. Comp Biochem Physiol 68B:41–48

    Google Scholar 

  • Schöttler U, Wienhausen G, Zebe E (1983) The mode of energy production in the lugworm Arenicola marina at different oxygen concentrations. J Comp Physiol 149:547–555

    Google Scholar 

  • Schöttler U, Wienhausen G, Westermann J (1984a) Anaerobic metabolism in the lugworm Arenicola marina L.: The transition from aerobic to anaerobic metabolism. Comp Biochem Physiol 79B:93–103

    Google Scholar 

  • Schöttler U, Surholt B, Zebe E (1984b) Anaerobic metabolism in Arenicola marina and Nereis virens during low tide. Mar Biol 81:69–73

    Google Scholar 

  • Schöttler U, Daniels D, Zapf K (1990) Influence of anoxia on adaptation of euryhaline polychaetes to hypoosmotic conditions. Mar Biol 104:443–451

    Google Scholar 

  • Schroff G, Schöttler U (1977) Anaerobic reduction of fumarate in the body wall musculature of Arenicola marina (Polychaeta). J Comp Physiol 116:325–336

    Google Scholar 

  • Schroff G, Zebe E (1980) The anaerobic formation of propionic acid in the mitochondria of the lugworm Arenicola marina. J Comp Physiol 138:35–41

    Google Scholar 

  • Schulz TKF, Kluytmans JH (1983) Pathway of propionate synthesis in the sea mussel Mytilus edulis L. Comp Biochem Physiol 75B:365–372

    Google Scholar 

  • Schulz TKF, Kluytmans JH, Zandee DI (1982) In vitro production of propionate by mantle mitochondria of the sea mussel Mytilus edulis L.: Overall mechanism. Comp Biochem Physiol 73B:673–680

    Google Scholar 

  • Schulz FKF, Van Duin M, Zandee D (1983) Propionyl-CoA carboxylase from the mussel Mytilus edulis L.: Some properties and its rose in the anaerobic energy metabolism. Mol Physiol 4:215–230

    Google Scholar 

  • Schulz TKF, Joosse A, Kluytmans JH (1984) Propionate synthesis in the sea mussel Mytilus edulis L.: possible role of acyl-CoA tranferase on the occurrence of a lag time. Mar Biol Lett 5:155–169

    Google Scholar 

  • Schwörbel J (1993) Einführung in die Limnologie. Gustav Fischer, Stuttgart

    Google Scholar 

  • Seuss J, Hipp E, Hoffmann KH (1983) Oxygen consumption, glycogen content and the accumulation of metabolites in Tubifex during aerobic-anaerobic shift and under progressing hypoxia. Comp Biochem Physiol 75A:557–562

    Google Scholar 

  • Seuss J, Hipp E, Höhenberger A, Hoffmann KH (1984) Physikalische, chemische und biologische Charakterisierung zweier Tubificiden-Standorte: Anpassungen im Energiestoffwechsel der Würmer an die natürlichen Lebensbedingungen. Arch Hydrobiol 100:45–59

    Google Scholar 

  • Shick JM, de Zwaan A, de Bont AMT (1982) Anoxic metabolic rate in the mussel Mytilus edulis L. estimated by simultaneous direct calorimetry and biochemical analysis. Physiol Zool 56:56–63

    Google Scholar 

  • Shuster Jr CN (1982) A pictorial review of the natural history and ecology of the horseshoe crab Limulus polyphemus, with reference to other Limulidae. In Bonaventura J, Bonaventura C, Tesh S (eds) Physiology and biology of horseshoe crabs. Liss, New York, pp 1–52

    Google Scholar 

  • Siebenaller JF (1979) Regulation of pyruvate kinase in Mytilus edulis by phosphorylation-dephosphorylation. Mar Biol Lett 1:105–110

    Google Scholar 

  • Siegmund B, Grieshaber MK (1983) Determination of meso-alanopine and d-strombine by high pressure liquid chromatography in extracts from marine invertebrates. Hoppe-Seyler's Z Physiol Chem 364:807–812

    Google Scholar 

  • Siegmund B, Grieshaber MK, Reitze M, Zebe E (1985) Alanopine and strombine are end products of anaerobic glycolysis in the lugworm, Arenicola marina L. (Annelida, Polychaeta). Comp Biochem Physiol 82B:337–345

    Google Scholar 

  • Siegel P, Pette D (1969) Intracellular localization of glycogenolytic and glycolytic enzymes in white and red rabbit skeletal muscle: a gel film method for coupled enzyme reactions in histochemistry. J Histochem Cytochem 17:225–237

    Google Scholar 

  • Smatresk NJ, Preslar AJ, Cameron JN (1979) Post-exercise acidbase disturbance in Carcinus lateralis, a terrestrial crab. J Exp Zool 210:205–210

    Google Scholar 

  • Smith PJS (1990) Integrated cardiovascular control in the molusca. Physiol Zool 63:12–34

    Google Scholar 

  • Somero GN, Hand SC (1990) Protein assembly and metabolic regulation: physiological and evolutionary perspectives. Physiol Zool 63:443–471

    Google Scholar 

  • Srivastava DK, Bernhard SA (1986) Enzyme-enzyme interactions and the regulation of metabolic reaction pathways. Curr Top Cell Regul 28:1–68

    Google Scholar 

  • Stokes TM, Awapara J (1968) Alanine and succinate as end-products of glucose degradation in the clam Rangia cuneata. Comp Biochem Physiol 25:883–892

    Google Scholar 

  • Storey KB (1984) Phosphofructokinase from foot muscle of the whelk, Busycotypus canaliculatum: evidence for covalent modification of the enzyme during anaerobiosis. Arch Biochem Biophys 235:(2) 665–672

    Google Scholar 

  • Storey KB (1985) Fructose-2,6-bisphospate and anaerobic metabolism in marine molluscs. FEBS Lett 181(2):245–248

    Google Scholar 

  • Storey KB (1986) A re-evaluation of the pasteur effect: new mechanisms in anaerobic metabolism. Mol Physiol 8:439–461

    Google Scholar 

  • Storey KB (1988) Suspended animation: the molecular basis of metabolic depression. Can J Zool 66:124–132

    Google Scholar 

  • Storey KB, Storey JM (1978) Energy metabolism in the mantle muscle of the squid, Loligo pealeii. J Comp Physiol 123:169–175

    Google Scholar 

  • Storey KB, Storey JM (1979) Octopine metabolism in the cuttle-fish, Sepia officinalis: octopine production by muscle and its role as an aerobic substrate for non-muscular tissues. J Comp Physiol 131B:311–319

    Google Scholar 

  • Storey KB, Storey JM (1983) Carbohydrate metabolism in cephalopod molluscs. In Hochachka PW (ed) The mollusca: Metabolic biochemistry and molecular biomechanics. Vol 1, pp 91–136, Academic Press, London

    Google Scholar 

  • Storey KB, Miller DC, Plaxton WC, Storey JM (1982) Gas-liquid chromatography and enzymatic determination of alanopine and strombine in tissues of marine invertebrates. Analyt Biochem 125:50–58

    Google Scholar 

  • Surholt B (1977) Production of volatile fatty acids in the anaerobic carbohydrate catabolism of Arenicola marina. Comp Biochem Physiol 58B:147–150

    Google Scholar 

  • Surholt B (1980) Metabolite concentrations in electrically stimulated lugworms Arenicola marina. Comp Biochem Physiol 67B:187–189

    Google Scholar 

  • Surlykke A (1983) Effect of anoxia on the nervous system of a facultative anaerobic invertebrate, Arenicola marina. Mar Biol Lett 4:117–126

    Google Scholar 

  • Takamiya S, Furushima R, Oya H (1984) Electron transfer complexes of Ascaris suum muscle mitochondria: 1. Characterization of NADH-cytochrome c reductase (complex I-III), with special reference to cytochrome localization. Mol Biochem Parasitol 13:121–134

    Google Scholar 

  • Takamiya S, Furushima R, Oya H (1986) Electron-transfer complexes of Ascaris suum muscle mitochondria. II. Succinate-coenzyme Q reductase (complex II) associated with substrate-reducible cytochrom b-558. Biochim Biophys Acta 848:99–107

    Google Scholar 

  • Taylor AC (1976) The respiratory responses of Carcinus maenas to declining oxygen tension. J exp Biol 65:309–322

    Google Scholar 

  • Taylor AC, Brand AR (1975) A comparative study of the respiratory responses of the bivalves Arctica islandica L. and Mytilus edulis L. to declining oxygen tensions. Proc R Soc Lond B 190:443–456

    Google Scholar 

  • Taylor EW (1982) Control and co-ordination of ventilation and circulation in crustaceans: responses to hypoxia and exercise. J exp Biol 100:289–319

    Google Scholar 

  • Taylor EW, Wheatly MG (1980) Ventilation, heart rate and respiratory gas exchange in the crayfish Austropotamobius pallipes (Lereboullet) submerged in normoxic water and following 3 h exposure in air at 15°C. J Comp Physiol 138:67–78

    Google Scholar 

  • Taylor EW, Wheatly MG (1981) The effect of long-term aerial exposure on heart rate, ventilation, respiratory gas exchange and acid-base status in the crayfish Austropotamobius pallipes. J exp Biol 92:109–124

    Google Scholar 

  • Taylor EW, Butler PJ, Sherlock PJ (1973) The respiratory and cardiovascular changes associated with the emersion response of Carcinus maenas (L.) during environmental hypoxia, at three different temperatures. J Comp Physiol 86:95–115

    Google Scholar 

  • Taylor EW, Butler PJ, Al-Wassia A (1977) Some responses of the shore crab, Carcinus maenas (L.), to progressive hypoxia at different acclimation temperatures and salinities. J Comp Physiol 122:391–402

    Google Scholar 

  • Teal JM, Carey FG (1967) The metabolism of marsh crabs under conditions of reduced oxygen pressure. Physiol Zool 40:83–91

    Google Scholar 

  • van Thoai NV (1968) Homologous phosphagen phosphokinases. In: Van Thoai NV, Roche J (eds) Homologous enzymes and biochemical evolution. Gordon and Breach, New York, pp 199–299

    Google Scholar 

  • van Thoai N, Robin Y (1959) Métabolisme des dérivés guanidyles. VIII. Biosynthèse de l'octopine et répartition de l'enzyme l'opérant chez les invertebrés. Biochim Biophys Acta 35:446–453

    Google Scholar 

  • van Thoai NV, Robin Y (1969) Guanidine compounds and phosphagens. In: Florkin M, Scheer BT (eds) Chemical Zoology, Vol 4, pp 163–203, Academic Press, New York

    Google Scholar 

  • van Thoai NV, Roche J (1964) Sur la biochemie comparée des phosphagènes et leur répartition chez les animaux. Biol Rev 39:214–231

    Google Scholar 

  • van Thoai NV, Robin Y, DiJeso F, Pradel LA, Kassab R (1964) Problème des doubles phosphagènes chez les Polychètes. Comp Biochem Physiol 11:387–392

    Google Scholar 

  • van Thoai N, Huc C, Pho DB, Olomucki A (1969) Octopine déshydrogénase. Purification et propriétés catalytiques. Biochim Biophys Acta 191:46–57

    Google Scholar 

  • Toulmond A (1973) Tide-related changes of blood respiratory variables in the lugworm arenicola marina (L.). Respir Physiol 19:130–144

    Google Scholar 

  • Toulmond A (1975) Blood oxygen transport and metabolism of the confined lugworm Arenicola marina (L.). J exp Biol 63:647–660

    Google Scholar 

  • Toulmond A, Tchernigovtzeff C (1984) Ventilation and respiratory gas exchange of the lugworm Arenicola marina (L.). as functions of ambient Po2 (20–700 torr). Respir Physiol 57:349–363

    Google Scholar 

  • Truchot JP, Duhamel-Jouve A (1980) Oxygen and carbon dioxide in the marine intertidal environment: diurnal and tidal changes in rockpools. Respir Physiol 39:241–254

    Google Scholar 

  • Trueman ER (1966) The mechanism of burrowing in the polychaete worm, Arenicola marina (L.). Biol Bull 131:369–367

    Google Scholar 

  • Trueman ER (1967) Activity and heart rate of bivalve molluscs in their natural habitat. Nature 214:832–833

    Google Scholar 

  • Trueman ER (1975) The locomotion of soft bodied animals. Arnold, London pp 127–158

    Google Scholar 

  • Umezurike GM, Chilaka FC (1982) Succinate-DCPIP and NADH-fumarate oxidoreductases in submitochondrial particles of the giant african snail (Achatina achatina) foot muscle. Comp Biochem Physiol 71B:181–185

    Google Scholar 

  • Villamarin JA, Rodriguez-Torres AM, Ibarguren I, Ramos-Martinez JI (1990) Phosphofructokinase in the mantle of the sea mussel Mytilus galloprovincialis Lmk. J Exp Zool 255:272–279

    Google Scholar 

  • Walsh JJ (1975) Utility of system models: a consideration of some possible feed back of the Peruvian upwelling ecosystem. In: Cronin AG (ed) Estuarine Research. Academic Press, New York

    Google Scholar 

  • Walsh PJ, McDonald DG, Booth CE (1984) Acid-base balance in the sea mussel Mytilus edulis. II. Effects of hypoxia and air exposure on intracellular acid-base status. Mar Biol Lett 5:359–369

    Google Scholar 

  • Ward PFV (1982) Aspects of helminth metabolism. Parasitology 84:177–194

    Google Scholar 

  • Watling L (1991) The sedimentary milieu and its consequences for resident organisms. Amer Zool 31:789–796

    Google Scholar 

  • Watts DC (1968) The origin and evolution of the phosphagen transferases. In: van Thoai NV, Roche J (eds) Homologous enzymes and biochemical evolution. Gordon and Breach, New York, pp 279–299

    Google Scholar 

  • Watts DC (1971) Evolution of phosphagen kinases. In: Schoffeniels E (ed) Biochemical evolution and the origin of life. North-Holland Pub, Amsterdam, pp 150–173

    Google Scholar 

  • Watts DC (1975) Evolution of phosphagen kinases in the chordate line. Symp zool Soc Lond 36:105–127

    Google Scholar 

  • Weber H (1926) Über die Umdrehreflexe einiger Prosobranchier des Golfes von Neapel. Z vergl Physiol 3:389–474

    Google Scholar 

  • Weber FE, Pette D (1990) Changes in free and bound forms and total amount of hexokinase isozyme II of rat muscle in response to contractile activity. Eur J Biochem 191:85–90

    Google Scholar 

  • Weigelt M, Rumohr H (1986) Effects of wide-range oxygen depletion on benthic fauna and demersal fish in Kiel Bay 1981–1983. Meeresforschung. Hamburg 31:124–126

    Google Scholar 

  • Weinland E (1901) Über Kohlenhydratzersetzung ohne Sauerstoffaufnahme bei Ascaris, einen tierischen Gärungsprozeß. Z Biol 42:55–90

    Google Scholar 

  • Werner B (1954) Eine Beobachtung der Wanderung von Arenicola marina L. (Polychaeta sedentaria). Helgoländer Wiss Meeresunters 5:93–102

    Google Scholar 

  • Werner B (1956) Über die Winterwanderung von Arenicola marina L. (Polychaeta sedentaria). Helgoländer Wiss Meeresunters 5:353–378

    Google Scholar 

  • Wernstedt C (1944) Metabolism of gill epithelium of a freshwater mussel. Nature 154:463

    Google Scholar 

  • von Westernhagen H, Hickel W, Bauerfeind E, Niermann U, Kröncke I (1986) Sources and effects of oxygen deficiencies in the south-eastern North Sea. Ophelia 26:457–473

    Google Scholar 

  • Wheatly MG, Taylor EW (1981) The effect of progressive hypoxia on heart rate, ventilation, respiratory gas exchange and acidbase status in the crayfish Austropotaobius pallipes. J exp Biol 92:125–141

    Google Scholar 

  • Widdows J, Bayne BL, Livingstone DR, Newell RIE, Donkin P (1979) Physiological and biochemical responses of bivalve molluscs to exposure to air. Comp Biochem Physiol 62A:301–308

    Google Scholar 

  • Wienhausen G (1981) Anaerobic formation of acetate in the lug worm Arenicola marina. Naturwissenschaften 68:206

    Google Scholar 

  • Wieser W (1981) Responses of Helix pomatia to anoxia: Changes of solute activity and other properties of the haemolymph. J Comp Physiol 141:503–509

    Google Scholar 

  • Wilps H, Schöttler U (1980) In vitro-studies on the anaerobic formation of ethanol by the larvae of Chironomus thummi (Diptera). Comp Biochem Physiol 67B:239–242

    Google Scholar 

  • Wilps H, Zebe E (1976) The end products of anaerobic carbohydrate metabolism in the larvae of Chironomus thummi thummi. J Comp Physiol 112:263–272

    Google Scholar 

  • Wilson DF, Nishiki K, Erecinska M (1981) Energy metabolism in muscle and its regulation during individual contraction-relaxation cycles. Trends Biochem Sci 6:16–19

    Google Scholar 

  • van Winkle W, Mangum CH (1975) Oxyconformers and oxyregulators: a quantitative index. J exp mar Biol Ecol 17:103–110

    Google Scholar 

  • Wood CM, Randall DJ (1981) Haemolymph gas transport, acid-base regulation, and anaerobic metabolism during exercise in the land crab (Cardisoma carnifex). J Exp Zool 218:23–35

    Google Scholar 

  • Zange J, Pörtner HO, Grieshaber MK (1989) The anaerobic energy metabolism in the anterior byssus retractor muscle of Mytilus edulis during contraction and catch. J Comp Physiol 159B:349–358

    Google Scholar 

  • Zebe E (1975) In vivo-Untersuchungen über den Glucose-Abbau bei Arenicola marina (Annelida, Polychaeta). J Comp Physiol 101:133–145

    Google Scholar 

  • Zebe E (1982) Anaerobic metabolism in Upogebia pugettensis and Callianassa californiensis (Crustacea, Thalassinidea). Comp Biochem Physiol 72B:613–617

    Google Scholar 

  • Zebe E (1991) Arthropods. In: Bryant C (ed) Metazoan life without oxygen. Chapman and Hall, London, pp 218–237

    Google Scholar 

  • Zebe E, Heiden T (1983) Anaerobiosis in earthworms: Investigation of Eisenia foetida. Verh Deutsch Zool Ges:221

    Google Scholar 

  • Zebe E, McShan WH (1957) Lactic and alpha-glycerophosphate dehydrogenases in insects. J Gen Physiol 40:779–790

    Google Scholar 

  • Zebe E, Rathmayer W (1968) Elektronenmikroskopische Untersuchungen an Spinnenmuskeln. Z Zellf Mikrosk Anatomie 92:377–387

    Google Scholar 

  • Zebe E, Salge U, Wiemann C, Wilps H (1981) The energy metabolism of the leech Hirudo medicinalis in anoxia and muscular work. J Exp Zool 218:157–163

    Google Scholar 

  • Zuntz N, Loewy A, Müller F, Caspari W (1906) Höhenklima und Bergwanderungen, Deutsches Verlagshaus, Berlin, p 38

    Google Scholar 

  • Zurburg W, de Zwaan A (1981) The role of amino acids in anaerobiosis and osmoregulation in bivalves. J Exp Zool 215:315–325

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Grieshaber, M.K., Hardewig, I., Kreutzer, U., Pörtner, HO. (1993). Physiological and metabolic responses to hypoxia in invertebrates. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 125. Reviews of Physiology, Biochemistry and Pharmacology, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030909

Download citation

  • DOI: https://doi.org/10.1007/BFb0030909

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57930-4

  • Online ISBN: 978-3-540-48388-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics