Skip to main content
Log in

Physical and numerical large-scale wave basin modeling of fluid-structure interaction and wave impact phenomena

  • Published:
Marine Systems & Ocean Technology Aims and scope Submit manuscript

Abstract

Physical and numerical large-scale wave basin (LSWB) modeling of fluid-structure interaction (FSI) and wave impact phenomena are examined in this study. In particular, the role of numerical modeling and simulation in designand analysis of physical LSWB FSI andwave impact experiments using a numerical wave basin (NWB) modeling approach is examined. Physical characteristics and testing capabilities of arepresentative LSWBare first described. Selectedphysical FSI and wave impactexperiments pertaining to civil, energy and naval engineering disciplines conducted at the LSWB and the accompanying NWBFSI modeling and simulations of these challenging phenomenaare presented. An effort to further improvetheNWBFSI softwarewith highly nonlinear wave impact modeling capabilities to facilitate physical FSI experiment design and testing,and details of an on-goingNWBdevelopment and validation processesare delineated.It is demonstrated that the NWBFSI software is useful in facilitating the design of complex, highly nonlinear FSI and wave impactexperiments. Conversely, the resulting measured data from the FSI and wave impact experiments can be used to validate and identify further modeling improvement needs of the NWBFSI and wave impactsoftware.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoci, C., Gallati, M. and Sibilla, S. (2007), “Numerical simulation of fluid-structure interaction by SPH”, Journal of Computers and Structures, Vol 85, 879–890.

    Article  Google Scholar 

  • Bishop, R. C., Silver, A. L., Tahmasian, D., Lee, S. S., Park, J. T. Snyder, L. A., and Kim, J. (2010), “T-craft Seakeeping model test data report”, NSWCCD-50-TR-2010–062, Hydromechanics Department Report.

    Google Scholar 

  • Bradner, C. (2008), “Large-scale laboratory observations of wave forces on a highway bridge superstructure”, MS Thesis, Oregon State University.

    Google Scholar 

  • Bradner, C., Schumacher, T., Cox, D., Higgins, C. (2011), “Experimental setup for a large-scale bridge superstructure model subjected to waves”, Journal of Waterway, Port, Coastal, and Ocean Engineering, 137(1), 3–11.Campana, E.

    Article  Google Scholar 

  • Di Mascio, A., Esposito, P. G., and Lalli, F.(1995), “Viscousinviscid coupling in free surface ship flows”, International Journal for Numerical Methods in Fluids, Vol 21, No.9, pp 699–722.

    Article  Google Scholar 

  • Challa, R., Newborn, D., and Yim, S.C. (2013), “Finite element contact/impact modeling capability of complex surface effect ship dynamics: preliminary assessment”, Offshore Mechanics and Arctic Engineering Conference, Nantes, France, June 9–14, Paper No.OMAE2013–11198.

    Book  Google Scholar 

  • Chen, H.-C., and Lee, S.-K. (1999), “RANS/Laplace calculations of nonlinear waves induced by surfacepiercing bodies”, Journal of Engineering Mechanics, Vol 125, No 11, pp 1231–1242.

    Article  Google Scholar 

  • Codina, R. (2002), “Stabilized finite element approximation of transient incompressible flows using orthogonal subscales”, Computer Methods in Applied Mechanics and Engineering, Vol 191, No 39–40, pp 4295–4321.

    Article  MathSciNet  Google Scholar 

  • Coleman, H.W., and Steele, Jr., G.W. (2009), Experimentation and uncertainty analysis for engineers, 3rd edition, New York, John Wiley and Sons, Inc.

    Book  Google Scholar 

  • Colicchio, G., Greco, M. and Faltinsen, O.M. (2006), “A BEM-level set domain-decomposition strategy for nonlinear and fragmented interfacial flows”, International Journal for Numerical Methods in Engineering, Vol 67, No 10, pp 1385–1419.

    Article  MathSciNet  Google Scholar 

  • Doctors, L. L. (2009), “A study of resistance characteristics of Surface-Effect-Ship Seals”, Proceedings of the High-Performance Marine-Vehicle Symposium, November 9–10, pp. 1–11.

    Google Scholar 

  • Elwood, D., Yim, S.C., Amon, E., von Jouanne, A., and Brekken, T.K.A. (2010a), “Experimental force characterization and numerical modeling of a taut-moored dual-body wave energy conversion system”, Offshore Mechanics and Arctic Engineering, ASME, Vol.132, doi:10.1115/1.3160535.

  • Elwood, D., Prudell, J., Stillinger, C., Brown, A., von Jouanne, A., Yim, S.C., Brekken T., and Paasch, R. (2010b), “Design, construction, and ocean testing of a taut-moored dual-body wave energy converter with a linear generator power take-off”, Renewable Energy, Vol.35, No.2, doi:10.1016/j.renene.2009.04.028, pp 348–354.

    Article  Google Scholar 

  • Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. (2002), “A hybrid particle level set method for improved interface capturing”, Journal of Computational Physics, Vol 183, No 1, pp 83–116.

    Article  MathSciNet  Google Scholar 

  • Falcão, A. F. d. O. (2010), “Wave energy utilization: A review of the technologies”, Renewable and Sustainable Energy Reviews, Vol 14, No 3, pp 899–918.

    Article  Google Scholar 

  • Fatone, L., Gervasio, P., and Quarteroni, A. (2000), “Multimodels for incompressible flows”, Journal of Mathematical Fluid Mechanics, Vol 2, No 2, pp 126–150.

    Article  MathSciNet  Google Scholar 

  • Feistauer, M., and, Schwab, C. (1998), Coupling of an interior Navier-Stokes problem with an exterior oseen problem, Technical Report 98–01, Eidgenossische Technische Hochschule, Zurich Switzerland.

    Google Scholar 

  • Fenton, D.J. (1985), “A fifth-order stokes theory for steady waves”, Journal of Waterway, Port, Coastal and Ocean Engineering, Vol 111, No 2, pp 216–234.

    Article  Google Scholar 

  • Grilli, S.T., and Subramanya, R. (1996), “Numerical modeling of wave breaking induced by fixed or moving boundaries”, Computational Mechanics, Vol 17, No 6, pp 374–391.

    Article  MathSciNet  Google Scholar 

  • Grilli, S.T., Guyenne, P., and Dias, F.(2001), “A fully nonlinear model for three-dimensional overturning waves over an arbitrary bottom”, International Journal for Numerical Methods in Fluids, Vol 35, No 7, pp 829–867.

    Article  Google Scholar 

  • Haller, M.C., Porter, A., Lenee- Bluhm, P., Rhinefrank, K., Hammagren, E., Ozkan- Haller, T., and Newborn, D. (2011), “Laboratory observations of waves in the vicinity of WEC-arrays”, Proceedings of the 9th European Wave and Tidal Energy Conference, (EWTEC).

    Google Scholar 

  • Hallquist, J. O. (2005), “LS-DYNA theoretical manual”, Livermore Software Technology Corporation.

    Google Scholar 

  • Hodges, C., Silver, R., Wieser, J., and Adelsen, A. (2009), “SES T-craft model testing”, NSWCCD-CISD-TR-2009–007, Ship Systems Integration & Design Department Report, Center for Innovation in Ship Design.

    Google Scholar 

  • Iafrati, A., and Campana, E.F. (2003), “A domain decomposition approach to compute wave breaking (wave-breaking flows)”, International Journal for Numerical Methods in Fluids, Vol 41, No 4, pp 419–445.

    Article  MathSciNet  Google Scholar 

  • Idelsohn, S.R., Del Pin, F., Rossi, R., Souli, M., and Benson, D.J. (2010), “Avoiding instabilities caused by added mass effects in fluid-structure interaction problems”, Arbitrary Lagrangian Eulerian and Fluid-Structure Interaction: Numerical Simulation, John Wiley & Sons.

    Google Scholar 

  • ISO (2008), Uncertainty of measurement — Part 3: Guide to expression of uncertainty in measurement (GUM:1955), Geneva, International Organization for Standardization.

    Google Scholar 

  • Kleefsman, K.M.T. (2005), “Water impact loading on offshore structures — a numerical study”, Ph.D. thesis, University of Groningen, The Netherlands. URL: https://doi.org/dissertations.ub.rug.nl/faculties/science/2005/k.m.t.kleefsman.

    Google Scholar 

  • Nimmala, S., Yim, S.C., and Grilli, S.T. (2013), “An efficient 3D FNPF numerical wave tank for virtual large-scale wave basin experiment,” Offshore Mechanics and Arctic Engineering, ASME, Vol 135, doi:10.1115/1.4007597, pp.10.

    Google Scholar 

  • Padgett, J., DesRoches, R., Nielson, B., Yashinsky, M., Kwon, O.-S., Burdette, N., and Tavera, E. (2008), “Bridge damage and repair costs from Hurricane Katrina,” Journal of Bridge Engineering, 13 (1), 6–14.

    Article  Google Scholar 

  • Park, J.C., Kim, M.H., and Miyata, H. (1999), “Fully nonlinear free-surface simulations by a 3D viscous numerical wave tank,” International Journal for Numerical Methods in Fluids, Vol 29, No 6, pp 685–703.

    Article  Google Scholar 

  • Rhinefrank, K., Schacher, A., Prudell, J., Cruz, J., Jorge, N., Stillinger, C., Naviaux, D., Brekken, T., von Jouanne, A., Newborn, D., Yim, S.C., and Cox, D.T. (2013), “Numerical analysis and scaled high resolution tank testing of a novel wave energy converter,” Offshore Mechanics and Arctic Engineering, ASME, doi: 10.1115/1.402886, pp.1–10.

    Google Scholar 

  • Schenk, K., and Hebeker, F.K.(1993), “Coupling of two dimensional viscous and inviscid incompressible stokes equations,” Technical Report Technical report preprint 93–68 (SFB 359), Heidelberg University.

    Google Scholar 

  • Soto, O., Lohner, R., Cebral, J. and Camelli, F. (2004), “A stabilized edge-based implicit incompressible flow formulation”, Computer Methods in Applied Mechanics and Engineering, Vol 193, No 23–26, pp 2139–2154.

    Article  Google Scholar 

  • Souli, M., and Benson, D.J. (2010), “Arbitrary Lagrangian-Eulerian and fluid-structure interaction numerical”, Wiley publications, USA.

    Google Scholar 

  • Stansby, P.K., Chengini, A., and Barnes, T.C.C. (1998), “The initial stages of dam-break flow”, Journal of Fluid Mehcanics, Vol 374, pp 407–424.

    Article  MathSciNet  Google Scholar 

  • Svendsen, I.A., and Grilli, S.T. (1990), “Nonlinear waves on steep slopes”, Journal of Coastal Research, pp 185–202.

    Google Scholar 

  • Van Paepegem, W., Blommaert, C., De Baere, I., Degrieck, J., De Backer, G., De Rouck, J., Degroote, J., Vierendeels, J., Matthys, S. and Taerwe, L., (2011), “Slamming wave impact of a composite buoy for wave energy applications: Design and large-scale testing”, Polymer Composites-2011, pp 700–713.

    Google Scholar 

  • Yang, Q., Jones, V., and McCue, L. (2012), “Free-surface flow interactions with deformable structures using an SPHFEM model”, Ocean Engineering, Vol 55, pp 136–147.

    Article  Google Scholar 

  • Wiggins A. D., Zalek, S. F., Perlin, M., Ceccio, S. L., Doctors, L. J and Etter, R. J., (2011), “Development of a large scale surface effect ship bow seal testing program”, 11th International conference on Fast Sea Transportation (FAST), Honolulu, Hawaii, USA.

    Google Scholar 

  • Yim, S.C., Olsen M. J., Cheung, K.F., Azadbakht, M. (2014), “Tsunami modeling, fluid load simulation, and validation using geospatial data”, Journal of Structural Engineering, ASCE, doi:10.1061/(ASCE)ST.1943-541X.0000940, pp.1–14.

    Google Scholar 

  • Yim, S.C., and Zhang, W. (2009), “A multiphysics, multiscale 3-D computational wave basin model for wave impact load on a cylindrical structure”, Journal of Disaster Research, Vol 4, No 6, pp 450–461.

    Article  Google Scholar 

  • Zalek, S.F., Karr, D.G., Jabbarizadeh, S., and Maki, K.J. (2011), “Modeling of air cushion vehicle’s seals under steady state conditions”, Ocean Systems Engineering, Vol 1, pp 17–29.

    Article  Google Scholar 

  • Zhang, Y., Yim, S.C., and Del Pin, F. (2013) “A heterogeneous flow model based on domain decomposition method for free-surface fluid-structure interaction problems”, International Journal of Numerical Methods in Fluids, doi:10.1002/fld.3852.

    Google Scholar 

  • Zhang, Y., Peszynska, M. and Yim, S.C. (2014) “Coupling of viscous and potential flow models with free surface for near and far field wave propagation”, International Journal of Numerical Analysis and Modeling, Series B, Vol.1(1), pp.1–18.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon C. Yim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yim, S.C., Azadbakht, M., Challa, R. et al. Physical and numerical large-scale wave basin modeling of fluid-structure interaction and wave impact phenomena. Mar. Syst. Ocean Technol. 9, 29–47 (2014). https://doi.org/10.1007/BF03449284

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03449284

Keywords

Navigation