Skip to main content
Log in

Impaired amyloid β-degrading enzymes in brain of streptozotocin-induced diabetic rats

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

An Erratum to this article was published on 01 February 2011

Abstract

Enzymes that degrade the amyloid β-peptide (Aβ) are important regulators of cerebral Aβ levels. High level of Aβ was found in the brain of diabetic patients and diabetic animals. Aim of the study was to investigate whether activities of Aβ-degrading enzymes neprilysin (NEP), endothelin-converting enzyme 1 (ECE-1) and insulin-degrading enzyme (IDE) were impaired in the brain of diabetic rats. Diabetes was induced in rats by ip administration of 65 mg/kg streptozotocin. The temporal cortex and hippocampus were obtained for activity and mRNA level assays of the three enzymes on the 35th day after induction. ECE-1 activity was significantly decreased both in the hippocampus and cortex of diabetic rats, while for IDE significantly lower activity occurred only in the cortex. NEP activity was slightly decreased in both brain regions. The hippocampus of diabetic rats showed significant decrease in mRNA levels of NEP and ECE-1 and moderate increase in IDE mRNA level. The cortex of diabetic rats showed slight decrease in mRNA levels of the three enzymes. The results indicated that the three Aβ-degrading enzymes were damaged to different extents in the brain of diabetic rats, and impairment of ECE-1 and IDE partly contributed to the elevated Aβ(1–40) levels in brain of diabetic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saido TC. Alzheimer’s disease as proteolytic disorders: anabolism and catabolism of beta-amyloid. Neurobiol Aging 1998, 19 (1 Suppl): S69–75.

    Article  PubMed  CAS  Google Scholar 

  2. Miners JS, Baig S, Palmer J, Palmer LE, Kehoe PG, Love S. Abeta-degrading enzymes in Alzheimer’s disease. Brain Pathol 2008, 18: 240–52.

    Article  PubMed  CAS  Google Scholar 

  3. Nalivaeva NN, Fisk LR, Belyaev ND, Turner AJ. Amyloid-degrading enzymes as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 2008, 5: 212–24.

    Article  PubMed  CAS  Google Scholar 

  4. Tanzi RE, Moir RD, Wagner SL Clearance of Alzheimer’s Abeta peptide: the many roads to perdition. Neuron 2004, 43: 605–8.

    PubMed  CAS  Google Scholar 

  5. Wang YJ, Zhou HD, Zhou XF. Clearance of amyloid-beta in Alzheimer’s disease: progress, problems and perspectives. Drug Discov Today 2006, 11: 931–8.

    Article  PubMed  CAS  Google Scholar 

  6. Caccamo A, Oddo S, Sugarman MC, Akbari Y, LaFerla FM. Age-and region-dependent alterations in Abeta-degrading enzymes: implications for Abeta-induced disorders. Neurobiol Aging 2005, 26: 645–54.

    Article  PubMed  CAS  Google Scholar 

  7. Cook DG, Leverenz JB, McMillan PJ, et al. Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-epsilon4 allele. Am J Pathol 2003, 162: 313–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Farris W, Mansourian S, Leissring MA, et al. Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein. Am J Pathol 2004, 164: 1425–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Funalot B, Ouimet T, Claperon A, et al. Endothelin-converting en-zyme-1 is expressed in human cerebral cortex and protects against Alzheimer’s disease. Mol Psychiatry 2004, 9: 1122–8, 1059.

    Article  PubMed  CAS  Google Scholar 

  10. Mouri A, Zou LB, Iwata N, et al. Inhibition of neprilysin by thiorphan (i.c.v.) causes an accumulation of amyloid beta and impairment of learning and memory. Behav Brain Res 2006, 168: 83–91.

    Article  PubMed  CAS  Google Scholar 

  11. Newell AJ, Sue LI, Scott S, et al. Thiorphan-induced neprilysin inhibition raises amyloid beta levels in rabbit cortex and cere-brospinal fluid. Neurosci Lett 2003, 350: 178–80.

    Article  PubMed  CAS  Google Scholar 

  12. Rempel HC, Pulliam L. HIV-1 Tat inhibits neprilysin and elevates amyloid beta. AIDS 2005, 19: 127–35.

    Article  PubMed  CAS  Google Scholar 

  13. Eckman EA, Adams SK, Troendle FJ, et al. Regulation of steady-state beta-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme. J Biol Chem 2006, 281: 30471–8.

    Article  PubMed  CAS  Google Scholar 

  14. Iwata N, Tsubuki S, Takaki Y, et al. Metabolic regulation of brain Abeta by neprilysin. Science 2001, 292: 1550–2.

    Article  PubMed  CAS  Google Scholar 

  15. Eckman EA, Watson M, Marlow L, Sambamurti K, Eckman CB. Alzheimer’s disease beta-amyloid peptide is increased in mice deficient in endothelin-converting enzyme. J Biol Chem 2003, 278: 2081–4.

    Article  PubMed  CAS  Google Scholar 

  16. Farris W, Mansourian S, Chang Y, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 2003, 100: 4162–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Miller BC, Eckman EA, Sambamurti K, et al. Amyloid-beta peptide levels in brain are inversely correlated with insulysin activity levels in vivo. Proc Natl Acad Sci USA 2003, 100: 6221–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Peila R, Rodriguez BL, Launer LJ. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes 2002, 51: 1256–62.

    Article  PubMed  CAS  Google Scholar 

  19. Yoneda S, Hara H, Hirata A, Fukushima M, Inomata Y, Tanihara H. Vitreous fluid levels of beta-amyloid(1–42) and tau in patients with retinal diseases. Jpn J Ophthalmol 2005, 49: 106–8.

    Article  PubMed  CAS  Google Scholar 

  20. Li ZG, Zhang W, Sima AA. Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 2007, 56: 1817–24.

    Article  PubMed  CAS  Google Scholar 

  21. Liu Y, Liu H, Yang J, et al. Increased amyloid beta-peptide (1–40) level in brain of streptozotocin-induced diabetic rats. Neuroscience 2008, 153: 796–802.

    Article  PubMed  CAS  Google Scholar 

  22. Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer’s disease: review and hypothesis. Neurobiology of Aging 2006, 27: 190–8.

    Article  PubMed  CAS  Google Scholar 

  23. Choi DS, Wang D, Yu GQ, et al. PKCepsilon increases endothelin converting enzyme activity and reduces amyloid plaque pathology in transgenic mice. Proc Natl Acad Sci USA 2006, 103: 8215–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Zhao Z, Xiang Z, Haroutunian V, Buxbaum JD, Stetka B, Pasinetti GM. Insulin degrading enzyme activity selectively decreases in the hippocampal formation of cases at high risk to develop Alzheimer’s disease. Neurobiol Aging 2007, 28: 824–30.

    Article  PubMed  CAS  Google Scholar 

  25. Fernandez D, Valdivia A, Irazusta J, Ochoa C, Casis L Peptidase activities in human semen. Peptides 2002, 23: 461–8.

    Article  PubMed  CAS  Google Scholar 

  26. Lopez-Ongil S, Saura M, Zaragoza C, et al. Hydrogen peroxide regulation of bovine endothelin-converting enzyme-1. Free Radic Biol Med 2002, 32: 406–13.

    Article  PubMed  CAS  Google Scholar 

  27. Havrankova J, Roth J, Brownstein MJ. Concentrations of insulin and insulin receptors in the brain are independent of peripheral insulin levels. Studies of obese and streptozotocin-treated rodents. J Clin Invest 1979, 64: 636–42.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Ingelsson M, Fukumoto H, Newell KL, et al. Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 2004, 62: 925–31.

    Article  PubMed  CAS  Google Scholar 

  29. Taguchi K, Yamagata HD, Zhong W, et al. Identification of hippocampus-related candidate genes for Alzheimer’s disease. Ann Neurol 2005, 57: 585–8.

    Article  PubMed  CAS  Google Scholar 

  30. Turner AJ, Murphy LJ. Molecular pharmacology of endothelin converting enzymes. Biochem Pharmacol 1996, 51: 91–102.

    Article  PubMed  CAS  Google Scholar 

  31. Yasojima K, Akiyama H, McGeer EG, McGeer PL. Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of beta-amyloid peptide. Neurosci Lett 2001, 297: 97–100.

    Article  PubMed  CAS  Google Scholar 

  32. Hellstrom-Lindahl E, Ravid R, Nordberg A. Age-dependent decline of neprilysin in Alzheimer’s disease and normal brain: inverse correlation with A beta levels. Neurobiol Aging 2008, 29: 210–21.

    Article  PubMed  CAS  Google Scholar 

  33. Pardossi-Piquard R, Petit A, Kawarai T, et al. Presenilin-dependent transcriptional control of the Abeta-degrading enzyme neprilysin by intracellular domains of betaAPP and APLP. Neuron 2005, 46: 541–54.

    Article  PubMed  CAS  Google Scholar 

  34. Russo R, Borghi R, Markesbery W, Tabaton M, Piccini A. Neprylisin decreases uniformly in Alzheimer’s disease and in normal aging. FEBS Lett 2005, 579: 6027–30.

    Article  PubMed  CAS  Google Scholar 

  35. Wang DS, Lipton RB, Katz MJ, et al. Decreased neprilysin immunoreactivity in Alzheimer disease, but not in pathological aging. J Neuropath Exp Neur 2005, 64: 378–85.

    Article  PubMed  CAS  Google Scholar 

  36. Cordes CM, Bennett RG, Siford GL, Hamel FG. Nitric oxide inhibits insulin-degrading enzyme activity and function through S-nitrosylation. Biochem Pharmacol 2009, 77: 1064–73.

    Article  PubMed  CAS  Google Scholar 

  37. Kim M, Hersh LB, Leissring MA, et al. Decreased catalytic activity of the insulin-degrading enzyme in chromosome 10-linked Alzheimer disease families. J Biol Chem 2007, 282: 7825–32.

    Article  PubMed  CAS  Google Scholar 

  38. Zhao L, Teter B, Morihara T, et al. Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer’s disease intervention. J Neurosci 2004, 24: 11120–6.

    Article  PubMed  CAS  Google Scholar 

  39. Hong H, Liu LP, Liao JM, et al. Downregulation of LPR1 at the blood-brain barrier in streptozotocin-induced diabetic mice. Neuropharmacology 2009, 56: 1054–9.

    Article  PubMed  CAS  Google Scholar 

  40. Liu LP, Hong H, Liao JM, et al. Upregulation of RAGE at the blood-brain barrier in streptozotocin-induced diabetic mice. Synapse 2009, 63: 636–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-dong Liu PhD.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF03347055.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Liu, L., Lu, S. et al. Impaired amyloid β-degrading enzymes in brain of streptozotocin-induced diabetic rats. J Endocrinol Invest 34, 26–31 (2011). https://doi.org/10.1007/BF03346691

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346691

Keywords

Navigation