Skip to main content
Log in

Adult Respiratory Distress Syndrome

Do Selective Anticoagulants Help?

  • Current Opinion
  • Published:
American Journal of Respiratory Medicine

Abstract

The adult respiratory distress syndrome (ARDS) is a form of acute lung injury that is characterized by florid extravascular fibrin deposition. Thrombosis in the pulmonary vasculature and disseminated intravascular coagulation have also been observed in association with ARDS. Fibrin deposition does not occur in the normal lung but is virtually universal in acute lung injury induced by disparate insults. A large body of basic and preclinical evidence further implicates abnormalities of pathways of fibrin turnover in the pathogenesis of acute inflammation and fibrotic repair. Coagulation is locally upregulated in the injured lung, while fibrinolytic activity is depressed. These abnormalities occur concurrently and favor alveolar fibrin deposition. The systemic derangements of fibrin turnover in sepsis are similar to those that occur in the injured lung.

Recent clinical trials demonstrate that interventions using selective anticoagulation can provide a mortality advantage and that selective anticoagulants differ in their ability to provide clinical benefit. Preclinical trials in primates with sepsis-induced ARDS now indicate that anticoagulant interventions that block the extrinsic coagulation pathway can protect against the development of pulmonary fibrin deposition as well as lung dysfunction and acute inflammation. These observations provide proof of principle that key steps in the coagulation cascade are appropriate therapeutic targets to prevent the development of acute lung injury in ARDS. Ongoing studies and prior publications also support the hypothesis that reversal of the fibrinolytic defect in ARDS could protect against the development of acute lung injury. In all, these studies suggest that fibrin deposition in the injured lung as well as abnormalities of coagulation and fibrinolysis are integral to the pathogenesis of ARDS. The ability of selective anticoagulants to effectively and safely alter clinical outcome in ARDS remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Idell S. Anticoagulants for ARDS: can they work? Am J Respir Crit Care Med 2001; 164: 517–20

    PubMed  CAS  Google Scholar 

  2. Idell S. Coagulation, fibrinolysis and fibrin deposition in lung injury and repair. In: Lenfant C, Phan SH, Thrall RS, editors. Pulmonary fibrosis: lung biology in health and disease. New York: Marcel Dekker, 1995: 743–76

    Google Scholar 

  3. Gunther A, Siebert C, Scmidt R, et al. Surfactant alterations in severe pneumonia, ARDS and cardiogenic lung edema. Am J Resp Crit Care Med 1996; 153: 176–84

    PubMed  CAS  Google Scholar 

  4. Gunther A, Kalinowski M, Rousseau S, et al. Surfactant incorporation markedly alters mechanical properties of a fibrin clot. Am J Respir Cell Mol Biol 1995; 13: 712–8

    PubMed  CAS  Google Scholar 

  5. Idell S. Extravascular coagulation and fibrin deposition in acute lung injury. New Horizons 1994; 2: 566–74

    PubMed  CAS  Google Scholar 

  6. Marshall R, Bellingan G, Laurent G. The acute respiratory distress syndrome: fibrosis in the fast lane. Thorax 1998; 53: 815–7

    Article  PubMed  CAS  Google Scholar 

  7. Idell S. The fibrinolytic defect in ARDS: a therapeutic opportunity? Clin Pulm Med 2002; 9: 13–9

    Article  Google Scholar 

  8. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315: 1650–9

    Article  PubMed  CAS  Google Scholar 

  9. Dvorak HF, Senger DR, Dvorak AM. Fibrin as a component of the tumor stroma: origins and biological significance. Cancer Metastasis Rev 1983; 2: 41–73

    Article  PubMed  CAS  Google Scholar 

  10. Dvorak HF, Senger DR, Dvorak AM, et al. Regulation of extravascular coagulation by microvascular permeability. Science 1985; 227: 1059–61

    Article  PubMed  CAS  Google Scholar 

  11. Rao LVM, Pendurhi UR. Factor Vila-induced gene expression: potential implications in pathophysiology. Trends Cardiovasc Med 2001; 11: 14–21

    Article  PubMed  CAS  Google Scholar 

  12. Bachofen M, Weibel ER. Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin Chest Med 1982 Jan; 3: 35–56

    PubMed  CAS  Google Scholar 

  13. Idell S, Peters J, James KK, et al. Local abnormalities of coagulation and fibrinolytic pathways that promote alveolar fibrin deposition in the lungs of baboons with diffuse alveolar damage. J Clin Invest 1989; 84: 181–93

    Article  PubMed  CAS  Google Scholar 

  14. Idell S, James KK, Gillies C, et al. Abnormalities of pathways of fibrin turnover in lung lavage of rats with oleic acid and bleomycin-induced lung injury support alveolar fibrin deposition. Am J Pathol 1989; 135: 387–99

    PubMed  CAS  Google Scholar 

  15. Idell S, James KK, Coalson JJ. Fibrinolytic activity in bronchoalveolar lavage of baboons with diffuse alveolar damage: trends in two forms of lung injury. Crit Care Med 1992; 20: 1431–40

    Article  PubMed  CAS  Google Scholar 

  16. Idell S, Peterson BT, Gonzalez KK, et al. Local abnormalities of coagulation and fibrinolysis and alveolar fibrin deposition in sheep with oleic acid-induced lung injury. Am Rev Resp Dis 1988; 138: 1282–94

    PubMed  CAS  Google Scholar 

  17. Idell S, Gonzalez KK, MacArthur CK, et al. Bronchoalveolar lavage procoagulant activity in bleomycin-induced lung injury in marmosets: characterization and relationship to fibrin deposition and fibrosis. Am Rev Resp Dis 1987; 136: 124–33

    Article  PubMed  CAS  Google Scholar 

  18. Eitzman DT, McCoy RD, Zheng X, et al. Bleomycin-induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene. J Clin Invest 1996; 97: 232–7

    Article  PubMed  CAS  Google Scholar 

  19. Barazzone C, Belin D, Piguet P-F, et al. Plasminogen activator inhibitor-1 in acute hyperoxic mouse lung injury. J Clin Invest 1996; 98: 2666–73

    Article  PubMed  CAS  Google Scholar 

  20. Idell S, James KK, Levin EG, et al. Local abnormalities in coagulation and fibrinolytic pathways predispose to alveolar fibrin deposition in the adult respiratory distress syndrome. J Clin Invest 1989; 84: 695–705

    Article  PubMed  CAS  Google Scholar 

  21. Gunther A, Mosavi P, Heinemann S, et al. Alveolar fibrin formation caused by enhanced procoagulant and depressed fibrinolytic capacities in severe pneumonia: comparison with the acute respiratory distress syndrome. Am J Resp Crit Care Med 2000; 161: 454–62

    PubMed  CAS  Google Scholar 

  22. Idell S, Koenig KB, Fair DS, et al. Serial abnormalities of fibrin turnover in evolving adult respiratory distress syndrome. Am J Physiol 1991; 261: L240–8

    PubMed  CAS  Google Scholar 

  23. Drake TA, Morissey JH, Edgington TS. Selective cellular expression of tissue factor in human tissues: implication for disorders of hemostasis and thrombosis. Am J Pathol 1989; 134: 1087–97

    PubMed  CAS  Google Scholar 

  24. McGee M, Rothberger H. Tissue factor in bronchalveolar lavage fluids: evidence for an alveolar macrophage source. Am Rev Respir Dis 1985; 131: 331–6

    PubMed  CAS  Google Scholar 

  25. Chapman HA, Stahl M, Allen CL, et al. Regulation of the procoagulant activity within the bronchoalveolar compartment of normal human lung. Am Rev Resp Dis 1988; 137: 1417–25

    PubMed  CAS  Google Scholar 

  26. Chapman HA, Bertozzi P, Reilly JJ. Role of enzymes mediating thrombosis and thrombolysis in lung disease. Chest 1988; 93: 1256–63

    Article  PubMed  CAS  Google Scholar 

  27. Tipping PG, Campbell DA, Boyce NW, et al. Alveolar macrophage procoagulant activity is increased in acute hyperoxic lung injury. Am J Pathol 1988; 131: 206–12

    PubMed  CAS  Google Scholar 

  28. Idell S, Kumar A, Zwieb C, et al. Effects of TGF-beta and TNF-alpha on procoagulant and fibrinolytic pathways of human tracheal epithelial cells. Am J Physiol 1994; 267: L693–703

    PubMed  CAS  Google Scholar 

  29. Idell S, Zwieb C, Boggaram J, et al. Mechanisms of fibrin formation and lysis by human lung fibroblasts: influence of TGF-beta and TNF-alpha. Am J Physiol 1992; 263: L487–94

    PubMed  CAS  Google Scholar 

  30. Olman M, Mackman N, Gladson CL, et al. Changes in procoagulant and fibrinolytic gene expression during bleomycin-induced lung injury in the mouse. J Clin Invest 1999; 96: 1621–30

    Article  Google Scholar 

  31. Bertozzi P, Astedt B, Zenzius L, et al. Depressed bronchoalveolar urokinase activity in patients with adult respiratory distress syndrome. N Engl J Med 1990 Mar 29; 322(13): 890–7

    Article  PubMed  CAS  Google Scholar 

  32. Neuhof H, Seeger W, Wolf HRD. Generation of mediators by limited proteolysis during blood coagulation and fibrinolysis: its pathogenetic role in the adult respiratory distress syndrome (ARDS). Reseuscitation 1986; 14: 23–32

    Article  CAS  Google Scholar 

  33. Nakstad B, Lyberg T, Skonsberg OH, et al. Local activation of the coagulation and fibrinolytic systems in lung disease. Thromb Res 1990; 57: 827–38

    Article  PubMed  CAS  Google Scholar 

  34. Zapol WM, Jones R. Vascular components of ARDS: clinical pulmonary hemodynamics and morphology. Am Rev Respir Dis 1987; 136: 471–4

    Article  PubMed  CAS  Google Scholar 

  35. Greene R. Pulmonary vascular obstruction in the adult respiratory distress syndrome. J Thorac Imaging 1986; 1:31–8

    Article  PubMed  CAS  Google Scholar 

  36. Hasday JD, Bachwich PR, Lynch JP III, et al. Procoagulant and plasminogen activator activities of bronchoalveolar fluid in patients with pulmonary sarcoidosis. Exp Lung Res 1988; 14: 261–78

    Article  PubMed  CAS  Google Scholar 

  37. Chapman HA, Allen CL, Stone OL. Abnormalities in pathways of fibrin turnover among patients with interstitial lung disease. Am Rev Respir Dis 1986; 133: 437–43

    PubMed  CAS  Google Scholar 

  38. Kuhn C III, Boldt J, King TE, et al. An immunohistochemical study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis. Am Rev Respir Dis 1989; 140: 1693–703

    Article  PubMed  Google Scholar 

  39. Jackson LK. Idiopathic pulmonary fibrosis. Clin Chest Med 1982; 3: 579–92

    PubMed  CAS  Google Scholar 

  40. Viscardi R, Broderick K, Sun CC, et al. Disordered pathways of fibrin turnover in lung lavage of premature infants with respiratory distress syndrome. Am Rev Respir Dis 1992; 146: 492–9

    PubMed  CAS  Google Scholar 

  41. Idell S, Kumar A, Koenig KB, et al. Pathways of fibrin turnover in lavage of premature baboons with hyperoxic lung injury. Am J Respir Crit Care Med 1994; 149: 767–75

    PubMed  CAS  Google Scholar 

  42. Sahn S. The pleura: state of the art. Am Rev Respir Dis 1988; 138: 184–234

    Article  PubMed  CAS  Google Scholar 

  43. Idell S, Pendurthi U, Pueblitz S, et al. Tissue factor pathway inhibitor in tetracycline-induced pleuritis in rabbits. Thromb Haemost 1998; 79: 649–55

    PubMed  CAS  Google Scholar 

  44. Idell S, Girard W, Koenig KB, et al. Abnormalities of pathways of fibrin turnover in the human pleural space. Am Rev Respir Dis 1991; 144: 187–94

    Article  PubMed  CAS  Google Scholar 

  45. Idell S, Zwieb C, Kumar A, et al. Pathways of fibrin turnover of human pleural mesothelial cells in vitro. Am J Respir Cell Mol Biol 1992; 7: 414–26

    PubMed  CAS  Google Scholar 

  46. Tillett WS, Sherry S. The effect in patients of streptococcal fibrinolysin (streptokinase) and streptococcal desoxyribonuclease on fibrinous, purulent and sanguinous pleural exudations. J Clin Invest 1949; 28: 173–90

    Article  CAS  Google Scholar 

  47. Sahn SA. Use of fibrinolytic agents in the management of complicated parapneumonic effusions and empyemas. Thorax 1998 Aug; 53Suppl. 2: S65–72

    Article  PubMed  Google Scholar 

  48. Light RW. Parapneumonic effusions: pleural diseases. 4th ed. Philadephia (PA): Lippincott Williams and Wilkins, 2001: 151–81

    Google Scholar 

  49. Colice GL, Curtis A, Deslauriers J, et al. Medical and surgical treatment of parapneumonic effusions: AACP consensus statement. Chest 2000; 18: 1158–71

    Article  Google Scholar 

  50. Abraham E. Coagulation abnormalities in acute lung injury and sepsis. Am J Respir Cell Mol Biol 2000; 22: 401–4

    PubMed  CAS  Google Scholar 

  51. Vervloet MG, Thisj LG, Hack CE. Derangements of coagulation and fibrinolysis in critically ill patients with sepsis and septic shock. Semin Thromb Hemost 1998; 24: 33–44

    Article  PubMed  CAS  Google Scholar 

  52. Ten Cate H. Pathophysiology of disseminated intravascular coagulation in sepsis. Crit Care Med 2000; 28: S9–S11

    Article  PubMed  Google Scholar 

  53. Saldeen T. The microembolism syndrome: a review. The microembolism syndrome. Stockholm: Almqvist and Wiskell, 1979: 7–44

    Google Scholar 

  54. Malik AB. Pulmonary microembolism. Physiol Rev 1983; 63: 1114–207

    PubMed  CAS  Google Scholar 

  55. Kaplan JE, Malik AB. Thrombin-induced intravascular coagulation: role in vascular injury. Semin Thromb Hemost 1987; 13: 398–415

    Article  PubMed  CAS  Google Scholar 

  56. Johnson A, Tahamont MV, Malik AB. Thrombin-induced vascular injury. Am Rev Respir Dis 1983; 128: 38–44

    PubMed  CAS  Google Scholar 

  57. Greene R, Lind S, Jantsch H, et al. Pulmonary vascular obstruction in severe ARDS: angiographic alterations after i.V. fibrinolytic therapy. Am J Roentgenol 1987; 148: 501–8

    CAS  Google Scholar 

  58. Levi M, Ten Cate H. Disseminated intravascular coagulation. N Engl J Med 1999; 341: 586–92

    Article  PubMed  CAS  Google Scholar 

  59. Abraham E. Tissue factor inhibition and clinical trial results of tissue factor pathway inhibitor in sepsis. Crit Care Med 2000; 28: S31–3

    Article  PubMed  CAS  Google Scholar 

  60. Bernard GR, Vincent J-L, Laterr P-F, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001; 344: 699–709

    Article  PubMed  CAS  Google Scholar 

  61. Esmon CT. Introduction: are natural anticoagulants candidates for modulating the inflammatory response to endotoxin? Blood 2000; 95: 1113–6

    PubMed  CAS  Google Scholar 

  62. Forster A, Wells P. Tissue plasminogen activator for the treatment of deep venous thrombosis of the lower extremity: a systemic review. Chest 2001; 119: 572–9

    Article  PubMed  CAS  Google Scholar 

  63. Warren BI, Eid A, Singer P, et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 2002; 287: 1869–78

    Article  Google Scholar 

  64. Chiron news. Chiron announces results of a phase III study of tifacogin in severe sepsis [online]. Available from URL: http://www.chiron.com/investor/index.htm [Accessed 2002 Mar 2]

  65. de Jong E, Dekkers PE, Creasey AA, et al. Tissue factor pathway inhibitor dosedependently inhibits coagulation activation without influencing the fibrinolytic and cytokine response during human endotoxemia. Blood 2000; 95: 1124–9

    Google Scholar 

  66. de Jong E, Dekkers PE, Creasey AA, et al. Tissue factor pathway inhibitor does not influence inflammatory pathways during human endotoxemia. J Infect Dis 2001; 183: 1815–8

    Article  Google Scholar 

  67. Welty-Wolf KE, Carraway MS, Huang YC-T, et al. Blockade of extrinsic coagulation decreases lung injury in baboons with gram negative sepsis. Am J Resp Crit Care Med 2001; 164: 1988–96

    PubMed  CAS  Google Scholar 

  68. de Fouw NJ, de Jong YF, Haverkate F, et al. Activated protein C increases fibrin clot lysis by neutralization of plasminogen activator inhibitor-no evidence for a cofactor role of protein S. Thromb Haemost 1988; 60: 328–33

    PubMed  Google Scholar 

  69. Bajzar L, Neshelm ME, Tracy PB. The profibrinolytic effect of activated protein C in clots formed from plasma is TAFI-dependent. Blood 1996; 88: 93–100

    Google Scholar 

  70. Brown LF, Dvorak AM, Dvorak HF. Leaky vessels, fibrin deposition, and fibrosis: a sequence of events common to solid tumors and many other types of disease. Am Rev Respir Dis 1989; 140: 1104–7

    PubMed  CAS  Google Scholar 

  71. Idell S. NHLBI workshop summary: fibrin turnover in lung inflammation and neoplasia. Am J Respir Crit Care Med 2001; 163: 1–7

    Google Scholar 

  72. Hardaway RM, Williams CH, Marvasti M, et al. Prevention of adult respiratory distress syndrome with plasminogen activator in pigs. Crit Care Med 1990; 18: 1413–8

    Article  PubMed  CAS  Google Scholar 

  73. Ambras JL, Ambrus CM. Changes in the fibrinolysin system in infantile and adult respiratory distress syndrome (ARDS), caused by trauma and/or septic shock in patients and in experimental animals. J Med 1990; 21: 67–84

    Google Scholar 

  74. Miazawa T, Tanemori N, Utsumi T, et al. Balloon occlusion pulmonary angiography and anticoagulant-antithrombotic therapy in ARDS-associated pulmonary vascular thrombosis. Nihon Kyobu Shikkan Gakki Zasshi 1991; 29: 439–43

    Google Scholar 

  75. Hardaway RM, Harke H, Williams CH. Fibrinolytic agents: a new approach in the treatment of adult respiratry distress syndrome. Adv Ther 1994; 11: 43–51

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author is supported by: NIH RO-1 HL45018, RO-1 HL 62453, RO-1 HL 71147 and PO-1 HL 42444, The Gina Sabatasse Research Grant Award and The Temple Endowed Chair in Pulmonary Fibrosis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Idell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Idell, S. Adult Respiratory Distress Syndrome. Am J Respir Med 1, 383–391 (2002). https://doi.org/10.1007/BF03257165

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03257165

Keywords

Navigation