Skip to main content
Log in

Characteristics of an extracellular protease isolated fromBacillus subtilis AG-1 and its performance in relation to detergent components

  • Industrial Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

An extracellular protease isolated fromBacillus subtilis AG-1 was investigated with respect to various detergents and formulation components. The enzyme had optimum at pH 8.0 and 60 °C temperature while zymographic study revealed two activity bands of 24.9 and 18 kDa. It showed high stability towards non-ionic (Tween 20, Tween 80, Triton X-100) and anionic surfactants sodium dodycyl sulfate (SDS), retaining 100 and 71% of its original activity. Another distinctive feature of the enzyme was its efficient stability towards hydrogen peroxide (H2O2) and sodium perborate and different commercial detergent brands. AG-1 protease was also examined for its activity/performance in combination with different stabilizers like glycerol, propylene glycol and polyethylene glycol (PEG). Enzyme showed a promising activity in the presence of this polyols especially PEG (8000). Whilst its compatibility with different commercially available powder and liquid detergents was also very interesting. These results suggest AG-1 protease as a good detergent compatible and can be utilized in the formulation of an environment friendly bio-detergent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali H.N., Agrebi R., Ghorbel B., Sellami-Kamoun A., Kanoun S., Nasri M. (2007). Biochemical and molecular characterization of a detergent stable alkaline serine-protease from a newly isolatedBacillus licheniformis NH1.Enzyme. Microb. Technol., 40: 515–523.

    Article  Google Scholar 

  • Bayoudh A., Gharsallah N., Chamkha M., Dhouib A., Ammar S., Nasri M. (2000). Purification and characterization of an alkaline protease fromPseudomonas aeruginosa MN1. J. Ind. Microbiol. Biotechnol., 24: 291–295.

    Article  CAS  Google Scholar 

  • Beg Q.K., Gupta R. (2003). Purification and characterization of an oxidation stable, thiol-dependent serine alkaline protease fromBacillus mojavensis. Enzyme Microb. Technol., 32: 294–304.

    Article  CAS  Google Scholar 

  • Christiansen T., Nielsen J. (2002). Production of extracellular protease and glucose uptake inBacillus clausii in steady-state transient continuous cultures. J. Biotechnol., 97: 265–273.

    Article  CAS  PubMed  Google Scholar 

  • Ghorbel B., Sellami-Kamoun A., Nasri M. (2003). Stability studies of protease fromBacillus cereus BG1. Enzyme Microb. Technol., 32: 513–518.

    Article  CAS  Google Scholar 

  • Gupta R., Beg Q.K., Lorenz P. (2002a). Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol., 59: 15–32.

    Article  CAS  PubMed  Google Scholar 

  • Gupta R., Beg Q.K., Khan S., Chauhan B. (2002b). An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl. Microbiol. Biotechnol., 60: 381–395.

    Article  CAS  PubMed  Google Scholar 

  • Kumar C.G., Takagi H. (1999). Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnol. Adv., 17: 561–594.

    Article  CAS  PubMed  Google Scholar 

  • Kunitz M. (1947). Crystalline soybean trypsin inhibitor. Part II. General properties. J. Gen. Physiol., 30: 291–301.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Nasri M., Kamoun A.S., Haddar A., Ali N.H., Frikha B.G., Kanoun S. (2006). Stability of thermostable alkaline protease fromBacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol. Res., 163 (3): 299–306.

    PubMed  Google Scholar 

  • Nilegaonkar S.S., Zambare V.P., Kanekar P.P., Dhakephalkar P.K., Sarnaik S.S. (2007). Production and partial characterization of dehairing protease fromBacillus cereus MCM-326. Bioresource Technol., 98: 1238–1245.

    Article  CAS  Google Scholar 

  • Nogueira E., Beshay U., Moreira A. (2006). Characteristics of alkaline protease enzyme produced byTeredinobactor turnirae and its potential applications as a detergent additive. Deutsche Lebensmittel-Rundschau, 102: 205–210.

    CAS  Google Scholar 

  • Schmidt T.M., Bleakley B., Nealson K.H. (1988). Characterization of an extracellular protease from the insect pathogenXenorhabdus luminescens. Appl. Environ. Microbiol., 54: 2793–2797.

    CAS  PubMed  Google Scholar 

  • Singh J., Batra N., Sobti R. C. (2001). Serine alkaline protease from a newly isolatedBacillus sp. SSR1. Process Biochem., 36: 781–785.

    Article  CAS  Google Scholar 

  • Wikstrom M.B., Elwing H., Linde A. (1981). Determination of proteolytic activity: a sensitive and simple assay utilizing substrates adsorbed to a plastic surface and radial diffusion in gel. Anal. Biochem., 118: 240–246.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afia Ghafoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghafoor, A., Hasnain, S. Characteristics of an extracellular protease isolated fromBacillus subtilis AG-1 and its performance in relation to detergent components. Ann. Microbiol. 59, 559–563 (2009). https://doi.org/10.1007/BF03175146

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175146

Key words

Navigation