Skip to main content
Log in

Cyclic deformation and phase transformation of 6Mo superaustenitic stainless steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A fatigue behavior analysis was performed on superaustenitic stainless steel UNS S31254 (Avesta Sheffield 254 SMO), which contains about 6wt.% molybdenum, to examine the cyclic hardening/softening trend, hysteresis loops, the degree of hardening, and fatigue life during cyclic straining in the total strain amplitude range from 0.2 to 1.5%. Independent of strain rate, hardening occurs first, followed by softening. The degree of hardening is dependent on the magnitude of strain amplitude. The cyclic stress-strain curve shows material softening. The lower slope of the degree of hardening versus the strain amplitude curve at a high strain rate is attributed to the fast development of dislocation structures and quick saturation. The ε martensite formation, either in band or sheath form, depending on the strain rate, leads to secondary hardening at the high strain amplitude of 1.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Albertini,Nuclear Eng. Design. 174, 135 (1997).

    Article  CAS  Google Scholar 

  2. A. Vicent, L. Oasco, M. Morin, X. Kleber, and M. Delnondedieu,Acta mater. 53, 4579 (2005).

    Article  Google Scholar 

  3. D. Ye, S. Matsuoka, N. Nagashima, and N. Suzuki,Mater. Sci. Eng. A. 415, 104 (2006).

    Article  Google Scholar 

  4. D. Ye, S. Matsuoka, N. Nagashima, and N. Suzuki,Mater. Chara. 55, 106 (2005).

    Article  CAS  Google Scholar 

  5. P. K. Chiu, S. H. Wang, J. R. Yang, K. L. Weng, and J. Fang,Mater. Chem. Phys. 98, 103 (2006).

    Article  CAS  Google Scholar 

  6. M. Bostshekan, S. Degallaix, Y. Desplanques, and J. Polak,Fatigue Fract. Eng. Mater. Struct. 21, 651 (1998).

    Article  Google Scholar 

  7. M. Bostshekan, S. Degallaix, and Y. Desplanques,Mater. Sci. Eng. A. 234–236, 463 (1997).

    Google Scholar 

  8. E. Nagy, V. Mertinger, F. Tranta, and J. Sólyom,Mater. Sci. Eng. A. 378, 308 (2004).

    Article  Google Scholar 

  9. S. Heino and B. Karlsson,Acta mater. 49, 339 (2001).

    Article  CAS  Google Scholar 

  10. C. C. Wu, S. H. Wang, C. Y. Chen, J. R. Yang, P. K. Chiu, and J. Fang,Scripta materialia 56, 717–720 (2007).

    Article  CAS  Google Scholar 

  11. P. K. Chiu, K. L. Weng, S. H. Wang, J. R. Yang, and J. Fang,Mater. Sci. Eng. A 398, 349 (2005).

    Article  Google Scholar 

  12. C. C. WuMaster Thesis, p. 61, National Taiwan Ocean University, Keelung, Taiwan (2006).

  13. G. C. Kaschner and J. C. Gibeling,Mater. Sci. Eng. A. 336, 170 (2002).

    Article  Google Scholar 

  14. L. E. Murr, K. P. Staudhammer, and S. S. Hecker,Metall. trans. A 13, 627 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shing-Hoa Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, SH., Wu, CC., Chen, CY. et al. Cyclic deformation and phase transformation of 6Mo superaustenitic stainless steel. Met. Mater. Int. 13, 275–283 (2007). https://doi.org/10.1007/BF03027883

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027883

Keywords

Navigation