Skip to main content

Advertisement

Log in

Mouse models in skeletal physiology and osteoporosis: experiences and data on 14839 cases from the Hamburg Mouse Archives

  • Original article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Our understanding of the developmental biology of the skeleton, like that of virtually every other subject in biology, has been transformed by recent advances in human and mouse genetics, but we still know very little, in molecular and genetic terms, about skeletal physiology. Thus, among the many questions that are largely unexplained are the following: why is osteoporosis mainly a women’s disease? How is bone mass maintained nearly constant between the end of puberty and the arrest of gonadal functions? Molecular genetics has emerged as a powerful tool to study previously unexplored aspects of the physiology of the skeleton. Among mammals, mice are the most promising animals for this experimental work. The input that transgenic animals can offer to our field depends on our means of phenotypic characterization of the mouse skeleton. In fact, full appreciation of the skeletal characteristics of a given mouse model requires the application of standardized protocols for noninvasive imaging, histology, histomorphometry, biomechanics, and individually adapted in vitro and in vivo analysis. Over the past years we have established a mouse archive that consists of 14839 cases from more than 120 different mouse models that we have phenotypically characterized in Hamburg. Today, this is one of the biggest databases on the mouse skeleton. This review focuses on one aspect of skeletal physiology, namely skeletal aging, and demonstrates that mouse models can be a valuable tool to gain insights in certain facets of skeletal physiology that have been unexplored previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frost HM, Jee WS (1992) On the rat model of human osteopenias and osteoporoses. Bone Miner 18: 227–236

    Article  PubMed  CAS  Google Scholar 

  2. Miller SC, Bowman BM, Jee WS (1995) Available animal models of osteopenia — small and large. Bone 17: 117S-123S

    PubMed  CAS  Google Scholar 

  3. Jee WS, Ma Y (1999) Animal models of immobilization osteopenia. Morphologie 83: 25–34

    PubMed  CAS  Google Scholar 

  4. Rubin J, Rubin H, Rubin C (1999) Constraints of experimental paradigms used to model the aging skeleton. In: Rosen CJ, Glowacki J, Bilezikian JP (eds) The Aging Skeleton. Academic, San Diego, pp 27–36

    Chapter  Google Scholar 

  5. Kalu DN (1999) Animal models of the aging skeleton. In: Rosen CJ, Glowacki J, Bilezikian JP (eds) The Aging Skeleton. Academic, San Diego, pp 37–50

    Chapter  Google Scholar 

  6. Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64: 693–702

    Article  PubMed  CAS  Google Scholar 

  7. Felix R, Hofstetter W, Cecchini MG (1996) Recent developments in the understanding of the pathophysiology of osteopetrosis. Eur J Endocrinol 134: 143–156

    Article  PubMed  CAS  Google Scholar 

  8. Amling M, Neff L, Priemel M, Schilling AF, Rueger JM, Baron R (2000) Progressive osteopetrosis and development of odontomas in aging c-Src deficient mice. Bone 27: 603–610

    Article  PubMed  CAS  Google Scholar 

  9. Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC (1994) Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol 126: 1611–1623

    Article  PubMed  CAS  Google Scholar 

  10. Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, Karperien M, Defize LH, Ho C, Mulligan RC, Abou-Samra AB, Juppner H, Segre GV, Kronenberg HM (1996) PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273: 663–666

    Article  PubMed  CAS  Google Scholar 

  11. Amling M, Neff L, Tanaka S, Inoue D, Kuida K, Weir E, Philbrick WM, Broadus AE, Baron R (1997) Bcl-2 lies downstream of parathyroid hormone-related peptide in a signaling pathway that regulates chondrocyte maturation during skeletal development. J Cell Biol 136: 205–213

    Article  PubMed  CAS  Google Scholar 

  12. Lanske B, Amling M, Neff L, Guiducci J, Baron R, Kronenberg HM (1999) Ablation of the PTHrP gene or the PTH/PTHrP receptor gene leads to distinct abnormalities in bone development. J Clin Invest 104: 399–407

    Article  PubMed  CAS  Google Scholar 

  13. Schilling AF, Priemel M, Beil FT, Haberland M, Holzmann T, Català-Lehnen P, Pogoda P, Blicharski D, Müldner C, Löcherbach C, Rueger JM, Amling M (2001) Transgenic mice in skeletal research. Towards a molecular understanding of the mammalian skeleton. J Musculoskel Neuronal Interact 1: 275–289

    CAS  Google Scholar 

  14. Ornoy A, Katzburg S (1995) Osteoporosis: animal models for human disease. In: Ornoy A (ed) Animal Models of Human Related Calcium Disorders. CRC, New York, pp 105–126

    Google Scholar 

  15. Kimmel DB (1996) Animal models for in vivo experimentation in osteoporosis research. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic, New York, pp 671–690

    Google Scholar 

  16. Beamer WG, Donahue LR, Rosen CJ, Baylink DJ (1995) Genetic variability in adult bone density among inbred strains of mice. Bone 18: 397–403

    Article  Google Scholar 

  17. Amling M, Herden S, Pösl M, Hahn M, Ritzel H, Delling G (1996) Heterogeneity of the skeleton: comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus. J Bone Miner Res 11: 36–45

    PubMed  CAS  Google Scholar 

  18. Bain SD, Bailey MC, Celino DL, Lantry MM, Edwards MW (1993) High dose estrogen inhibits bone resorption and stimulates bone formation in the ovariectomized mouse. J Bone Miner Res 8: 435- 442

    Article  PubMed  CAS  Google Scholar 

  19. Ducy P, Amling M, Takeda S, Priemel M, Schilling AS, Beil T, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100: 197–207

    Article  PubMed  CAS  Google Scholar 

  20. Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, Tornita Y, Yasuhira K, Hamamoto H, Shimizu K, Ishii M, Yamamuro T (1981) New murine model of accelerated senescence. Mech Ageing Dev 17: 183–194

    Article  PubMed  CAS  Google Scholar 

  21. Hosokawa M, Abe T, Higuchi K, Shimakawa K, Omori Y, Matsushita T, Kogishi K, Deguchi E, Kishimoto Y, Yasuoka K, Takeda T (1997) Management and design of the maintenance of SAM mouse strains an animal model for accelerated senescence and age-associated disorders. Exp Gerontol 32: 111–116

    Article  PubMed  CAS  Google Scholar 

  22. Matsushita M, Tsuboyama T, Kasai R, Okumura H, Yamamuro T, Higuchi K, Higuchi K, Kohno A, Yonezu T, Utani A, et al (1986) Age-related changes in bone mass in the senescence-accelerated mouse (SAM) SAM-R/3 and SAMP/6 as new murine models for senile osteoporosis. Am J Pathol 215: 276–283

    Google Scholar 

  23. Suda T (1994) Osteoporotic bone changes in SAMP6 are due to a decrease in osteoblast progenitor cells. In: Takeda T (ed) The SAM Model of Senescence. Excerpta Medica, Amsterdam, pp 47- 52

    Google Scholar 

  24. Jilka RL, Weinstein RS, Takahashi K, Parfitt AM, Manolagas SC (1996) Linkage of decreased bone mass with impaired osteoblastogenesis in murine model of accelerated senescence. J Clin Invest 97: 1732–1740

    Article  PubMed  CAS  Google Scholar 

  25. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89: 309- 319

    Article  PubMed  CAS  Google Scholar 

  26. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Lin Tan H, Xu W, Lacey DL, Boyle WL, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12: 395–400

    Article  Google Scholar 

  27. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Ali E, Qian YX, Kaufman S, Sarosi I, et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93: 165- 176

    Article  PubMed  CAS  Google Scholar 

  28. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteopro-tegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95: 3597–3602

    Article  PubMed  CAS  Google Scholar 

  29. Suda T, Udagawa N, Nakamura I, Miyaura C, Takahashi N (1995) Modulation of osteoclast differentiation by local factors. Bone 17: S87-S91

    Article  Google Scholar 

  30. Nakagawa N, Kinosaki M, Yamaguchi K, et al (1999) RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun 253: 395–400

    Article  Google Scholar 

  31. Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, Amling M, Karsenty G (1999) A Cbfal-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 13: 1025–1036

    Article  PubMed  CAS  Google Scholar 

  32. Frost HM (1979) Treatment of osteoporoses by manipulation of coherent bone cell populations. Clin Orthop 143: 227–244

    PubMed  Google Scholar 

  33. Rodan GA, Martin TJ (1991) Role of osteoblasts in hormonal control of bone resorption—a hypothesis. Calcif Tissue Int 33:349- 351

    Article  Google Scholar 

  34. Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM (1992) In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256: 1550–1552

    Article  PubMed  CAS  Google Scholar 

  35. Hamel W, Magnelli L, Chiarugi VP, Israel MA (1996) Herpes simplex virus thymidine kinase/ganciclovir-mediated apoptotic death of bystander cells. Cancer Res 56: 2697–2702

    PubMed  CAS  Google Scholar 

  36. Corral DA, Amling M, Priemel M, Loyer E, Fuchs S, Ducy P, Baron R, Karsenty G (1998) Dissociation between bone resorption and bone formation in osteopenic transgenic mice. Proc Natl Acad Sci USA 95: 13835–13840

    Article  PubMed  CAS  Google Scholar 

  37. Amling M, Takeda S, Karsenty G (2000) A neuroendocrine regulation of bone remodeling. Bioessays 22: 970–975

    Article  PubMed  CAS  Google Scholar 

  38. Haberland M, Schilling AF, Rueger JM, Amling M (2001) Brain and bone: central regulation of bone mass. J Bone Joint Surg 83A: 1801–1809

    Google Scholar 

  39. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111: 305–317

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amling.

About this article

Cite this article

Pogoda, P., Priemel, M., Schilling, A.F. et al. Mouse models in skeletal physiology and osteoporosis: experiences and data on 14839 cases from the Hamburg Mouse Archives. J Bone Miner Metab 23 (Suppl 1), 97–102 (2005). https://doi.org/10.1007/BF03026332

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026332

Key words

Navigation