Skip to main content
Log in

Die Acritarcha: ihre Klassifikation, Morphologie, Ultrastruktur und paläoökologische/paläogeographische Verbreitung

The Acritarcha: their Classification, morphology, ultrastructure and palaeoecological/palaeogeographical distribution

  • Published:
Paläontologische Zeitschrift Aims and scope Submit manuscript

Abstract

The acritarchs are considered to form the oldest marine organisms with an eukaryotic cell Organization. They are of great biostratigraphic, palaeoecological and palaeobiogeographic importance for the Precambrian and Early Palaeozoic. The present study provides a survey of their possible biological affinities. The main morphological characteristics of the acritarchs and their palaeogeographic and palaeoecological distribution are described and evaluated. Regarding the gene-sis of eukaryotes, the serial endosymbiosis theory (SET), the archaezoa theory, the fusion hypothesis and the hydrogen hypothesis are briefly described, compared and discussed.

Significant differences of the evolutionary acceleration of the proterozoic acritarchs (negative acceleration of vesicle diameters and simultaneous positive acceleration of diversity) are described and interpreted in the light of the SET as an evidence for major reorganizations of the cell compartments.

Kurzfassung

Die Acritarchen bilden die ältesten marinen Organismen mit mutmaßlich eukaryotischer Zellorganisation. Sie besitzen für die Zeiträume des Präkambriums und des tieferen Paläozoikums hohen biostratigraphischen Wert und eine große paläoökologische und paläobiogeographische Aussagekraft. In der vorliegenden Studie wird eine kurze Übersicht über mögliche biologische Beziehungen der Acritarchen gegeben und ihre wichtigsten morphologischen Merkmale sowie ihre paläoökologische und paläobiogeographische Verbreitung dargestellt und diskutiert. Für die Entstehung der Eukaryoten werden neben der Seriellen Endosymbionten Theorie (SET) die Archaezoa-Theorie, die Fusions-Hypothese und die Wasserstoff-Hypothese komprimiert vorgestellt und vergleichend diskutiert.

Markante Akzelerationsunterschiede proterozoischer Acritarchen (negative Akzeleration der Vesikeldurchmesser unter gleichzeitiger positiver Akzeleration der Diversität) werden beschrieben und anhand der Prinzipien der SET als Hinweise auf bedeutende Reorganisationen der Zellkompartimentierung interpretiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Al-Almeri, T.K. 1983. Acid-resistant microfossils used in the determination of Palaeozoic palaeoenvironments in Lybia. — Palaeogeography, Palaeoclimatology, Palaeoecology44: 103–116.

    Google Scholar 

  • Albani, R.;Lelkes-Felvary, G. &Tongiorgi, M. 1985. First record of Ordovician (Upper Arenigian, Acritarchs) beds in Bakony Mts., Hungarya. — Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen170: 45–65.

    Google Scholar 

  • Amard, B. 1997.Chuariapendjariensis n. sp., acritarche du bassin des Volta, Benin et Burkina-Faso, Afrique de l’Ouest: un ta-xon nouveau du Cambrien inferieur. — Academie des Sciences, Paris, Earth and Planetary Sciences, Compte Rendu324: 477–483.

    Google Scholar 

  • Arnold, CG. 1987. Die Entstehung der eukaryontischen Zelle (Eucyte). — In:Siewing, R., Hrsg., Evolution: 181–198, Stuttgart (G. Fischer).

    Google Scholar 

  • Bloeser, B.;Schopf, J.W.;Horodyski, R J. &Breed, W.J. 1977. Chitinozoans from the Late Precambrian Chuar Group of the Grand Canyon, Arizona. — Science195: 676–679.

    Google Scholar 

  • Bosence, D.W.J. &Allison, P.A. 1995. Marine Palaeoenvironmental Analysis from Fossils. — Geological Society of London, Special Publication83: 1–272.

    Google Scholar 

  • Brocke, R. 1992. First results of palynological investigation of the Lower Arenig. — VIII International Palynological Congress, Aix-en-Provence Program and Abstracts: 18.

  • Burmann, G. 1970. Weitere organische Mikrofossilien aus dem unteren Ordovizium. — Paläontologische Abhandlungen (B)3: 289–332.

    Google Scholar 

  • Butterfield, N.J.;Knoll, A.H. &Sweet, K. 1988. Exceptional preservation of fossils in an Upper Proterozoic shale. — Nature334: 424–427.

    Google Scholar 

  • Cavalier-Smith, T. 1987a. The origin of eukaryote and archae-bacterial cells. — Annals of the New York Academy of Sciences503: 7–54.

    Google Scholar 

  • Cavalier-Smith, T. 1987b. Eukaryotes with no mitochondria. — Nature326: 332–333.

    Google Scholar 

  • Cavalier-Smith, T. &Chao, E.E. 1996. Molecular phylogeny of the free-living archaezoaTrempomonas agilis and the nature of the first eukaryote. — Journal of Molecular Evolution43: 551–562.

    Google Scholar 

  • Châteauneuf, J.J. &Reyre, Y. 1975. Eléments de Palynologie: Applications Géologiques. — 345 S., Genève (Laboratoire de Paléontologie de l’Université de Genève).

    Google Scholar 

  • Clark, C.G. &Roger, A.J. 1995. Direct evidence for secondary loss of mitochondria inEntamoeba histologica. — National Academy of Science of the United States of America, Proceedings92: 6518–6521.

    Google Scholar 

  • Colbath G.K. 1990a. Palaeobiogeography of Middle Palaeozoic organic-walled phytoplankton. — In:McKerrow, W.S. &Scotese, C.R., Hrsg., Palaeozoic Palaeogeography and Bio-geography, Geological Society of London, Memoir12: 207–213.

    Google Scholar 

  • Colbath, G.K. 1990b. Devonian (Givetian-Frasnian) organic-walled phytoplancton from the Limestone Billy Hills reef complex, Canning Basin, Western Australia. — Palaeontographica (B)217: 87–145.

    Google Scholar 

  • Colbath, G.K. &Grenfell, H.R. 1995. Review of biological affinities of Palaeozoic acid-resistant, organic-walled eukaryotic algal microfossils (including “acritarchs”). — Review of Palaeobotany and Palynology86: 287–314.

    Google Scholar 

  • Cramer, F.H. 1968. Silurian palynologie microfossils and paleolatitudes. — Neues Jahrbuch für Geologie und Paläontologie, Monatshefte1968: 591–597.

    Google Scholar 

  • Cramer, F.H. 1969. Possible implications for Silurian paleogeography from phytoplancton assemblages of the Rose Hill and Tuscarona Formations of Pennsylvania. — Journal of Paleontology43: 485–491.

    Google Scholar 

  • Cramer, F.H. 1970a. Distribution of selected Silurian acritarchs: an account of the palynostratigraphy and paleogeography of selected Silurian acritarch taxa. — Revista Española de Micro-paleontologia, Numero Extraordinario1: 1–203.

    Google Scholar 

  • Cramer, F.H. 1970b. Middle Silurian continental movements estimated from phytoplankton facies transgression. — Earth and Planetary Science Letters10: 87–93.

    Google Scholar 

  • Cramer, F.H. 1971. Implications from middle Paleozoic palynofacies transgressions for the rate of crustal movement, especially during the Wenlockian. — Suplemento dos Anais da Academia Brasileira de Ciencias43: 51–66.

    Google Scholar 

  • Cramer, F.H. &Diez, M.C.R. 1970. Acritarchs from the Lower Silurian Neahga Formation, Niagara Peninsula, North America. — Canadian Journal of Earth Sciences7: 1077–1086.

    Google Scholar 

  • Cramer, F.H. &Diez, M.C.R. 1972. Early Paleozoic palynomorph provinces and their spatial arrangement: acritarchs. — Palaeontographica (B)138: 107–180.

    Google Scholar 

  • Cramer, F.H. &Diez, M.C.R. 1974a. Early Paleozoic palynomorph provinces and paleoclimate. — Society of Economic Paleontologists and Mineralogists, Special Publication21: 177–188.

    Google Scholar 

  • Cramer, F.H. &Diez, M.C.R. 1974b. Silurian acritarchs: distribution and trends. — Review of Palaeobotany and Palynology18: 137–154.

    Google Scholar 

  • Cramer, F.H. &Diez, M.C.R. 1977. Lower Paleozoic phytoplankton from North Africa and adjacent regions — general survey. — Annales des Mines et de la Geologie28: 21–34.

    Google Scholar 

  • Cramer, F.H.;Diez, C.R. &Cuerda, A.J. 1974. Late Silurian chitinozoans and acritarchs from Cochabama, Bolivia. — Neues Jahrbuch für Geologie und Paläontologie, Monatshefte1974: 1–12.

    Google Scholar 

  • Dean, W.T. &Martin, F. 1978. Lower Ordovician acritarchs and trilobites from Bell Island, Eastern Newfoundland. — Geological Survey of Canada, Bulletin284: 1–35.

    Google Scholar 

  • Dean, W.T. &Martin, F. 1992. Ordovician biostratigraphic correlation in southern Turkey. — In:Webby, B.D. &Laurie, J.R., Hrsg., Global Perspektives on Ordovician Geology: 195–203, Rotterdam (Balkema).

    Google Scholar 

  • Deunff, J. 1961. Un microplancton à Hystrichosphères dans le Tramadoc du Sahara. — Revue de Micropaléontologie4: 37–52.

    Google Scholar 

  • Diver, W.L. &Peat, C.J. 1979. On the interpretation and Classification of Precambrian organic-walled microfossils. — Geology7: 401–404.

    Google Scholar 

  • Doolittle, W.F. 1996. Some aspects of the biology of cells and their possible evolutionary significance. — Symposium of the Society for General Microbiology54: 1–21.

    Google Scholar 

  • Dorning, K. 1981a. Silurian acritarch distribution in the Ludlovian shelf sea of South Wales and the Welsh Borderland. — In:Neale, J.W. &Brasier, M.D., Hrsg., Microfossils from Re-cent and fossil shelf seas: 31–36, Chichester (Ellis Horwood).

    Google Scholar 

  • Dorning, K. 1981b. Silurian acritarchs from the type Wenlock and Ludlow of Shropshire, England. — Review of Palaeobotany and Palynology34: 175–203.

    Google Scholar 

  • Dorning, K. 1987. The organic palaeontology of Palaeozoic carbonate environments. — In:Hart, M.B., Hrsg., Micropalaeontology of Carbonate Environments: 256–265, Chichester (Ellis Horwood).

    Google Scholar 

  • Dorning, K. &Bell, D.G. 1987. The Silurian carbonate shelf microflora: acritarch distribution in the Much Wenlock Limestone. — In:Hart, M.B., Hrsg., Micropalaeontology of Carbonate Environments: 266–287, Chichester (Ellis Horwood).

    Google Scholar 

  • Downie, C. 1973. Observations on the nature of the acritarchs. — Palaeontology16: 239–259.

    Google Scholar 

  • Downie, C. 1984. Acritarchs in British stratigraphy. — Geological Society of London Special Reports17: 1–26.

    Google Scholar 

  • Downie C;Evitt, W.R. &Sarjeant, W.A.S. 1963. Dinoflagellates, hystrichospheres, and the Classification of the acritarchs. — Stanford University Publications, Geological Sciences7: 1–16.

    Google Scholar 

  • Dufka, P. 1990. Palynomorphs in the Llandovery black shale sequence of the Prague Basin (Barrandian area, Bohemia). — Casopsis pro mineralogii a geologii35: 15–31.

    Google Scholar 

  • Eisenack, A;Cramer, F.H. &Diez-Rodriguez, M.C.R. 1973. Katalog der fossilen Dinoflagellaten, Hystrichosphären und verwandten Mikrofossilien, Bd. 3 Acritarcha (1). — 1104 S., Stuttgart (E. Schweizerbart).

    Google Scholar 

  • Eiserhardt, K.H. 1992. Die Acritarcha des Öjlemyrflintes. — Palaeontographica (B)226: 1–132.

    Google Scholar 

  • Elaouad-Debbaj, Z. 1984. Acritarchs et chitinozoaires de rArenig-Llamvirn de 1’Anti-Atlas (Maroc). — Review of Pa-laeobotany and Palynology43: 67–88.

    Google Scholar 

  • Ellegaard, M. 2000. Variations in dinoflagellate cyst morphology under conditions of changing salinity during the last 2000 years in the Limfjord, Denmark. — Review of Palaeobotany and Palynology109: 65–81.

    Google Scholar 

  • Evitt, W.R. 1963a. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, I. — National Academy of Science of the United States of America, Proceedings49: 158–164.

    Google Scholar 

  • Evitt, W.R. 1963b. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, II. — National Academy of Science of the United States of America, Proceedings49: 298–302.

    Google Scholar 

  • Ewetz, C.E. 1933. Einige neue Funde in der Visingsöformation. — Geologiska Föreningens i Stockholm Förhandlingar55: 506–518.

    Google Scholar 

  • Fairchild, T.R;Barbour, A.P. &Haralyi, N.L.E. 1978. Microfossils in the “Eopaleozoic” Jacadigo Group at Urucum, Mato Grosso, Southwest Brazil. — Boletim Instituto de Geosciencias da Universidade de Sao Paulo9: 74–79.

    Google Scholar 

  • Fensome, R.A.;Williams, G.L.;Barss, M. S.;Freeman, J. M. &Hill, J. M. 1990. Acritarchs and fossil prasinophytes: An index to genera, species and infraspecific taxa. — American Association of Stratigraphic Palynologists Contribution Series25: 1–771.

    Google Scholar 

  • Fortey, R.a. &Mellish, C.J.T. 1992. Are some fossils better than others for inferring palaeogeography? The early Ordovician of the North Atlantic region as an example. — Terra Nova4: 210–216.

    Google Scholar 

  • Fowler, G.M. 1984. Organic Geochemistry of Precarboniferous Sedimentary Organic Matter. — 218 S., Newcastle upon Tyne (Doktorarbeit).

    Google Scholar 

  • Fowler, G.M. 1992. The influence ofGloeocapsomorpha prisca on the organic geochemistry of oils and organic-richs rocks of Late Ordovician age from Canada. — In:Schidlowski, M.;Golubic, S.;Kimberley, M.M.;McKirdy, D.M. &Trudinger, P.A., Hrsg., Early Organic Evolution: 336–356, Berlin (Springer).

    Google Scholar 

  • Ghavidel-Syooki, M. 1992. First Ordovician palynological record from Alborz Mountain Range, Northern Iran. — VIII International Palynological Congress, Aix-en-Provence Program and Abstracts: 52.

  • Gooday, G.W. 1981. Biogenesis of sporopollenin in fungal cell walls. — In:Turian, G. &Holl, H.R., Hrsg., The Fungal Spore, Morphogenetic Controls: 487–505, New York (Academic Press).

    Google Scholar 

  • Gray, J. &Boucot, A.J. 1972. Palynological evidence bearing on the Ordovician-Silurian paraconformity in Ohio. — Geological Society of America, Bulletin83: 1299–1314.

    Google Scholar 

  • Gray, J. &Boucot, A.J. 1989. IsMoyeria a Euglenoid? — Lethaia22: 447–456.

    Google Scholar 

  • Gupta, R.S. &Golding, G.B. 1996. The origin of the eukaryotic cell. — Trends in Biochemical Sciences21: 166–171.

    Google Scholar 

  • Guttierrez, M.J.C. &Rabano, I. 1987. Paleobiogeographical aspects of the Ordovician mediterranean faunas. — Geogazeta2: 24–26.

    Google Scholar 

  • Hutton, A.C. 1987. Petrographic Classification of oil shales. — International Journal of Coal Geology8: 203–231.

    Google Scholar 

  • Jacobson, S.R. 1979. Acritarchs as paleoenvironmental indicators in Middle and Upper Ordovician rocks from Kentucky, Ohio and New York. — Journal of Paleontology53: 1197–1212.

    Google Scholar 

  • Jardine, S.;Combaz, A.;Magloire, L. &Vachey, G. 1974. Distribution stratigraphique des acritarchs dans le Paleozoique du Sahara Algerien. — Review of Palaeobotany and Palynology18: 99–129.

    Google Scholar 

  • Jux, U. 1968. Über den Feinbau der Wandung beiTasmanites Newton. — Palaeontographica (B)124: 112–124.

    Google Scholar 

  • Jux, U. 1969a. Über den Feinbau der Zystenwandung vonPachysphaera marshalliae Parke, 1966. — Palaeontographica (B)125: 104–111.

    Google Scholar 

  • Jux, U. 1969b. Über den Feinbau der Zystenwandung vonHalosphaera Schmitz, 1878. — Palaeontographica (B)128: 48–55.

    Google Scholar 

  • Jux, U. 1971. Über den Feinbau einiger paläozoischer Baltisphaer-idiaceen. — Palaeontographica (B)136: 115–128.

    Google Scholar 

  • Jux, U. 1975. Phytoplankton aus dem mittleren Oberdevon (Neh-den-Stufe) des südwestlichen Bergischen Landes (Rheinisches Schiefergebirge). — Palaeontographica (B)149: 113–138.

    Google Scholar 

  • Jux, U. 1977. Über die Wandstrukturen sphaeromorpher Acritar-chen:Tasmanites Newton,Tapajonites Sommer &van Boekel,Chuaria Walcott. — Palaeontographica (B)160: 1–16.

    Google Scholar 

  • Keeling, P.W. &Doolittle, W.F. 1997. Evidence that eukaryotic triosephosphate isomerase is alpha-proteobacterial origin. — National Academy of Science of the United States of America, Proceedings94: 1270–1275.

    Google Scholar 

  • Kjellstrøm, G. 1968. Remarks on the chemistry and ultrastructure of the cell wall of some Palaeozoic leiospheres. — Geologiska Föreningens i Stockholm Förhandlingar90: 118–221.

    Google Scholar 

  • Knoll, A.H. &Butterfield, N.J. 1989. Palaeontology; new window on Proterozoic life. — Nature337: 602–603.

    Google Scholar 

  • Knoll, A.H. &Calder, S. 1983. Microbiotas of the Late Precambrian Ryssö Formation, Nordaustlandet, Svalbard. — Palaeontology26: 467–496.

    Google Scholar 

  • Knoll, A.H.;Sweet, K. &Mark, J. 1991. Paleobiology of a Neoproterozoic Tidal Flat/Lagoonal Complex: the Draken Conglomerate Formation, Spitzbergen. — Journal of Paleontology65: 531–570.

    Google Scholar 

  • Knoll, A.H. &Vidal, G. 1980. Late Proterozoic vase-shaped microfossils from the Visingsö Beds, Sweden. — Geologiska Föreningens i Stockholm Förhandlingar102: 207–211.

    Google Scholar 

  • Knoll, A.H. &Walter, W.R. 1992. Latest Proterozoic stratigraphy and Earth history. — Nature356: 673–677.

    Google Scholar 

  • Kokinos, J.P. &Anderson, D.M. 1995. Morphological develop-ment of resting cysts in cultures of the marine dinoflagellateLingulodinium polyedrum (=L. machaerophorum). — Palynology19: 143–166.

    Google Scholar 

  • Lake, J.A. &Rivera, M.C. 1994. Was the nucleus the first endosymbiont? — National Academy of Science of the United States of America, Proceedings91: 2880–2882.

    Google Scholar 

  • Le Hérissé, A. 1984. Microplancton à paroi organique du Silurien de Gotland (Suède): observations au microscope electronique de structures de désenkystement. — Review of Palaeobotany and Palynology43: 217–236.

    Google Scholar 

  • Le Hérissé, A. 1989. Acritarches et kystes d’algues prasinophycées du Silurien de Gotland, Suede. — Palaeontographica Italica76: 57–302.

    Google Scholar 

  • Le Hérissé, A. &Gourvennec, R. 1992. Paleobiology of Silurian — Early Devonian acritarchs. — VIII. International Palynological Congress, Aix-en-Provence, Program and Abstracts: 83.

  • Lehninger, A.L.;Nelson, D.L. &Cox, M.M. 1994. Prinzipien der Biochemie. — 1223 S., Heidelberg (Spektrum Akademischer Verlag).

    Google Scholar 

  • Li, J. 1987. Ordovician acritarchs from the Meitan Formation of Guizhou Province, south-west China. — Palaeontology30: 613–634.

    Google Scholar 

  • Lindberg, D.R.;Lipps, J.H. &Hazel, J.E. 1993. Micropalaeontology. — In:Lipps, J.H., Hrsg., Fossil Prokaryotes and Protists: 31–50, Boston (Blackwell).

    Google Scholar 

  • Lister, T.R. 1970. The acritarchs and Chitinozoa from the Wenlock and Ludlow Series of the Ludlow and Millichope areas, Shropshire. Part 1. — Palaeontographical Society Monograph124: 1–100.

    Google Scholar 

  • Littke, R.;Baker, D.R. &Leythaeuser, D. 1988. Microscopic and sedimentologic evidence for the generation and migration of hydrocarbons in Toarcian source rocks of different maturities. — Organic Geochemistry13: 549–559.

    Google Scholar 

  • Loeblich, A.R. 1970. Morphology, ultrastructure and distribution of Paleozoic acritarchs. — Proceedings of the North American Paleontological Convention, September 1969 G33: 705–788.

    Google Scholar 

  • Loh, H.;Prauss, M. &Riegel, W. (1986): Primary production, maceral formation and carbonate species in the Posidonia Shale of NW Germany. — Mitteilungen des Geologisch-Paläontologischen Instituts der Universität Hamburg60: 397–421.

    Google Scholar 

  • Margulis, L. 1981. Symbiosis in cell evolution: life and its environment on the early earth. — 419 S., San Francisco (Freeman).

    Google Scholar 

  • Margulis, L. 1993. Symbiosis in cell evolution: microbial communities in the Archean and Proterozoic eons. — 452 S., New York (Freeman).

    Google Scholar 

  • Martin, F. &Rickard, B. 1979. Acritarches, Chitinozoaires et Graptolithes Ordoviciens et Siluriens de la Vellée de la Senette (Massif du Brabant, Belgique). — Annales de la Societe de Beige102: 189–197.

    Google Scholar 

  • Martin, W. &Müller, M. 1998. The hydrogen hypothesis for the first eukaryote. — Nature392: 37–41.

    Google Scholar 

  • Martin, F. &Kjellstrøm, G. 1973. Ultrastructural study of some Ordovician acritarchs from Gotland, Sweden. — Neues Jahrbuch für Geologie und Paläontologie, Monatshefte1973 (1): 44–54.

    Google Scholar 

  • Mendelson, C.V. 1993. Acritarchs and prasinophytes. — In:Lipps, J.H., Hrsg., Fossil Prokaryotes and Protists: 77–104, Boston (Blackwell).

    Google Scholar 

  • Mette, W. 1989. Acritarchs from the Lower Paleozoic rocks of the Western Sierra Morena, SW Spain and biostratigraphical results. — Geologica et Palaeontologica23: 1–19.

    Google Scholar 

  • Miller, M.A. 1987. A diagnostic excystment suture in the Silurian acritarchCircinatisphaera aenigma gen. et sp. nov. — Palynology11: 97–104.

    Google Scholar 

  • Miller, M.A. &Williams, G.L. 1988.Velatasphaera hudsonii gen. et sp. nov., an Ordovician acritarch from Hudson Strait, Northwest Territories, Canada. — Palynology12: 121–127.

    Google Scholar 

  • Miller, M.A. &Wood, G.D. 1982. Trochospiral suture: a new excystment structure in the Lower Paleozoic AcritarchaLeiofusa tumida Downie 1959, andEupokilofusa cantabrica (Cramer) Cramer 1971. — Neues Jahrbuch für Geologie und Paläontologie, Monatshefte1982 (9): 547–552.

    Google Scholar 

  • Molyneux, S.G. 1987. Acritarchs and chitinozoans from the Arenig Series of south-western Wales. — Bulletin of the British Museum of Natural History (Geology)41: 309–364.

    Google Scholar 

  • Molyneux, S.G. &Rushton, A.W.A. 1988. The age of the Watch Hill Grits (Ordovician), English Lake District: structural and palaeogeographical implications. — Transactions of the Royal Society of Edinburgh, Earth Sciences79: 43–69.

    Google Scholar 

  • Müller, M. 1993. The hydrogenosome. — Journal of General Microbiology139: 2879–2889.

    Google Scholar 

  • Munnecke, A. &Servais, T. 1996. Scanning electron microscopy of polished, slightly etched surfaces: a method to observe palynomorphs in situ. — Palynology20: 163–176.

    Google Scholar 

  • Ottone, E.G.;Toro, B.A. &Waisfeld, B.G. 1992. Lower Ordovician Palynomorphs from the Acoite Formation, northwestern Argentinia. — Palynology16: 93–116.

    Google Scholar 

  • Parke, M. 1966. The genusPachysphaera (Prasinophyceae). — In:Barnes, H., Hrsg., Some contemporary Studies in Marine Science: 555–563, London (Allen & Unwin).

    Google Scholar 

  • Pflug, H.D. &Reitz, E. 1985. Earliest Phytoplancton of Eukaryotic Affinity. — Naturwissenschaften72: 656–657.

    Google Scholar 

  • Pflug, H.D. &Reitz, E. 1986. Evolutionary changes in the Proterozoic. — Lecture Notes in Earth Sciences8: 95–103.

    Google Scholar 

  • Pflug, H.D. &Reitz, E. 1988. Zur Evolution des eukaryotischen Phytoplanktons im Riphäikum — Neue Erkenntnisse aus der Belt Serie von Nordamerika. — Geologische Rundschau77: 417–427.

    Google Scholar 

  • Pflug, H.D. &Reitz, E. 1992. Palynostratigraphy in Phanerozoic and Precambrian Metamorphic Rocks. — In:Schidlowski, M.;Golubic, S.;Kimberley, M.M.;McKirdy, D.M. &Trudinger, P.A., Hrsg., Early Organic Evolution: Implications for Mineral and Energy Resources: 509–518, Berlin (Springer).

    Google Scholar 

  • Pirozynski, K.A. 1976. Fungal spores in fossil record. — Biological Memoirs1: 104–120.

    Google Scholar 

  • Rauscher, R. 1973. Recherches micropaléontologiques et strati-graphiques dans l’Ordovicien et le Silurien en France. Étude des acritarchs, des chitinozoaires et des spores. — Sciences Géologiques Université Louis Pasteur de Strasbourg, Mémoire38: 1–224.

    Google Scholar 

  • Reaugh, A.B. 1978. A new excystment mechanism in the Silurian acritarchDiexallophasis of Virginia. — Palaeontology21: 869–872.

    Google Scholar 

  • Reitz, E. 1991. Palynologische Untersuchungen an Metasediment-en: Methodik und Ergebnisse. — 76 S., München (Habilitationsschrift).

    Google Scholar 

  • Reitz, E. &Heuse, T. 1994. Palynofazies im Oberordovizium des Saxothuringikums. — Neues Jahrbuch für Geologie und Paläontologie, Monatshefte1994 (6): 348–360.

    Google Scholar 

  • Reitz, E. &Höll, R. 1992. Palynological evidence for lower Ordovician rocks (Tremadoc and Arenig) in the Northern Greywacke Zone (Eastern Alps). — Terra Nova4: 198–207.

    Google Scholar 

  • Reitz, E.;Anderle, H.J. &Winkelmann, M. 1995. Ein erster Nachweis von Unterordovizium (Arenig) am Südrand des Rheinischen Schiefergebirges im Vordertaunus: Der Bierstadt-Phyllit (Bl. 5915 Wiesbaden). — Geologisches Jahrbuch Hessen123: 25–38.

    Google Scholar 

  • Richardson, J.B. &Rasul, S.M. 1990. Palynofacies in a Late Silurian regressive sequence in the Welsh Borderland and Wales. — Journal of the Geological Society London147: 675–686.

    Google Scholar 

  • Schönheit, P. &Schäfer, T. 1995. Metabolism of hyperther-mophiles. — World Journal of Microbiology and Biotechnology11: 26–57.

    Google Scholar 

  • Schopf, J.W. &Klein, C. 1992. The Proterozoic Biosphere: A Multidisciplinary Study. — 1348 S., New York (Columbia University Press).

    Google Scholar 

  • Servais, T. 1996. Some considerations on acritarch Classification. — Review of Palaeobotany and Palynology93: 9–22.

    Google Scholar 

  • Servais, T. &Eiserhardt, K.H. 1995. A discussion and proposals concerning the Lower Paleozoic „galeate“ acritarch plexus. — Palynology19: 191–210.

    Google Scholar 

  • Servais, T. &Katzung, G. 1993. Acritarch dating of Ordovician Sediments of the Island of Rügen (NE-Germany). — Neues Jahrbuch für Geologie und Paläontologie, Monatshefte1993 (12): 713–723.

    Google Scholar 

  • Servais, T.;Montenari, M. &Stricanne, L. 2001. Acritarchs at the Cambro-Ordovician boundary: biostratigraphy or ecophenotypism? — Palaeontological Newsletter48: 30–31.

    Google Scholar 

  • Servais, T.;Stricanne, L.;Montenari, M. &Pross, J. im Druck. Ecophenotypism of galeate acritarchs („pre-dinoflag-ellates“) at the Cambrian-Ordovician boundary in the algerian Sahara. — Palaeontology.

  • Servais, T.;Brocke, R.;Fatka, O.;Le Hérissé, A. &Molyneux, S.G. 1996. Value and Meaning of the Term Acritarch. — Acta Universitatis Carolinae Geologica40: 631–643.

    Google Scholar 

  • Sherwood, N.R. &Cook, A.c. 1986. Organic matter in the Toolebuc Formation. — Geological Society of Australia, Special Publication12: 255–265.

    Google Scholar 

  • Sitte, P.;Ziegler, H.;Ehrendorf, F. &Bresinsky, A. 1991. Lehrbuch der Botanik für Hochschulen. — 1030 S., Stuttgart (G. Fischer).

    Google Scholar 

  • Smith, J.E. &Berry, D.R. 1974. An Introduction to Biochemistry of Fungal Development. — 326 S., London (Academic Press).

    Google Scholar 

  • Staplin, F.L. 1961. Reef-controlled distribution of Devonian microplancton in Alberta. — Palaeontology4: 392–424.

    Google Scholar 

  • Steiner, M. 1996.Chuaria circularis Walcott 1899 — “Mega-sphaeromorph Acritarch” or Prokaryotic Colony? — Acta Universitatis Carolinae Geologica40: 645–665.

    Google Scholar 

  • Stricanne, L. &Servais, T. 2002. A Statistical approach to Classification of the Cambro-Ordovician galeate acritarch plexus. — Review of Palaeobotany and Palynology118: 239–259.

    Google Scholar 

  • Strother, P.K. 1990. The construction of models to produce distributions of simple cell morphologies. — In:Ponnamperuma, C. &Eirich, F.R., Hrsg., Prebiological self organiziation of matter: 280, Hampton (Deerpak Publishing).

    Google Scholar 

  • Strother, P.K. 1994. Sedimentation of palynomorphs in rocks of pre-Devonian age. — In:Traverse, A., Hrsg., Sedimentation of Organic Particles: 489–502, Cambridge (Cambridge University Press).

    Google Scholar 

  • Strother, P.K. 1996. Chapter 5 Acritarchs. — In:Jansonius, J. &McGregor, D.C., Hrsg., Palynology: principles and applications1: 81–106, Salt Lake City (AASP Foundation).

    Google Scholar 

  • Strother, P.k. &Tobin, K. 1987. Observation on the genusHuroniospora Barghoorn: Implications for the paleoecology of the Gunflint microbiota. — Precambrian Research36: 323–333.

    Google Scholar 

  • Talyzina, N.M. &Moczydlowska, M. 2000. Morphological and ultrastructural studies of some acritarchs from the Lower Cambrian Lükati Formation, Estonia. — Review of Palaeobotany and Palynology112: 1–21.

    Google Scholar 

  • Tappan, H. 1980. The Paleobiology of Plant Protists. — 1028 S., San Francisco (Freeman).

    Google Scholar 

  • Taylor, F.J.R. 1974. Implications and extensions of the serial endosymbiosis theory of the origin of eukaryotes. — Taxon23: 229–258.

    Google Scholar 

  • Turner, R.E. &Wadge, A.J. 1979. Acritarch dating of Arenig volcanism in the Lake District. — Proceedings of the York-shire Geological Society42: 405–414.

    Google Scholar 

  • Turon, J.L. 1984. Le palynoplancton dans l’environnement actuel de L’Atlantique Nord-Oriental. Evolution climatique et hydrologique depuis le dernier maximum glaciaire. — Memoires de I’Institut de Geologie du Bassin d’Aquitaine, Université de Bordeaux17: 1–313.

    Google Scholar 

  • Tyson, R.V. 1995. Sedimentary organic matter. Organic facies and palynofacies. — 615 S., London (Chapman & Hall).

    Google Scholar 

  • Van Waveren, I.M. &Marcus, N.H. 1993. Morphology of recent copepod egg envelopes from Turkey Point, Gulf of Mexiko, and their implications for acritarch affinity. — In:Molyneux, S.G. &Dorning, K.J., Hrsg., Contributions to acritarch and chitinozoan research, Special papers in Palaeontology48: 111–124.

    Google Scholar 

  • Vavrdová, M. 1972. Acritarchs from Klabava Shale (Arenig). — Věstnik Českého Geologického Ústavu47: 79–86.

    Google Scholar 

  • Vavrdová, M. 1974. Geographical differentiation of Ordovician acritarch assemblages in Europe. — Review of Palaeobotany and Palynology18: 171–175.

    Google Scholar 

  • Vavrdová, M. 1986. New genera of acritarchs from the Bohemian Ordovician. — Casopsis pro Mineralogii a Geologii31: 349–360.

    Google Scholar 

  • Vavrdová, M. 1990. Early Ordovician acritarchs from the locality Myto near Rokycany (Late Arenig, Czechoslovakia). — Casopsis pro Mineralogii a Geologii35: 239–250.

    Google Scholar 

  • Vavrdová, M. 1997. Early Ordovician provincialism in acritarch distribution. — Review of Palaeobotany and Palynology98: 33–40.

    Google Scholar 

  • Vidal, G. 1976. Late Precambrian microfossils from the Visingsö Beds in southern Sweden. — Fossils and Strata9: 1–57.

    Google Scholar 

  • Vidal, G. 1979. Acritarchs from the upper Proterozoic and Lower Cambrian of East Greenland. — Grønlands Geologiske Undersøgelse Bulletin134: 1–55.

    Google Scholar 

  • Vidal, G. 1981. Micropalaeontology and biostratigraphy of the Upper Proterozoic and Lower Cambrian sequences in East Finnmark, northern Norway. — Norges Geologiske Undersokelse Bulletin362: 1–53.

    Google Scholar 

  • Vidal, G. 1984. The oldest plankton. — Scientific American250: 48–57.

    Google Scholar 

  • Vidal, G. 1990. Giant acanthomorph acritarchs from the upper Proterozoic in southern Norway. — Palaeontology33: 287–298.

    Google Scholar 

  • Vidal, G. &Knoll, A.h. 1983. Proterozoic plankton. — Geological Society of America, Memoir161: 265–277.

    Google Scholar 

  • Wall, D. 1965. Microplankton, pollen, and spores from the Lower Jurassic in Britain. — Micropalaeontology11: 151–190.

    Google Scholar 

  • Wall, D.;Dale, B. &Harada, K. 1973. Descriptions of new fossil dinoflagellates from the Late Quaternary of the Black Sea. — Micropaleontology19: 18–31.

    Google Scholar 

  • Westphal, H. &Munnecke, A. 1997. Mechanical compaction versus early cementation in fine-grained limestones; differentiation by the preservation of organic microfossils. — Sedimentary Geology112: 33–42.

    Google Scholar 

  • Williams, D.B. &Sarjeant, W.A.S. 1967. Organic-walled microfossils as depth and shoreline indicators. — Marine Geology5: 389–412.

    Google Scholar 

  • Woese, CR. 1988. Archäbakterien — Zeugen aus der Urzeit des Lebens. — In:Mayr, E., Hrsg., Evolution: Die Entwicklung von den ersten Lebensspuren bis zum Menschen: 122–136, Heidelberg (Spektrum Akademischer Verlag).

    Google Scholar 

  • Wood, G.D. 1984. A stratigraphic, paleoecologic, and paleobio-geographic review of the acritarchsUmbellasphaeridium deflandrei andUmbellasphaeridium saharicum. — In:Sutherland, P.K. &Manger, W.L., Hrsg., Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère, 2. Biostratigraphy, Compte Rendu: 191–211, Carbondale and Edwardsville (Southern Illinois University Press).

    Google Scholar 

  • Yuan, X.;Xiao, S.;Li, J.;Yin, L. &Cao, R. 2001. Pyritized chuarids with excystment structures from the late Neoproterozoic Lantian formation in Anhui, South China. — Precambrian Research107: 253–263.

    Google Scholar 

  • Zang, W. &Walter, M.R. 1989. Latest Proterozoic plankton from the Amadeus Basin in cental Australia. — Nature337: 642–645.

    Google Scholar 

  • Zillig, W. 1989. Did eukaryotes originate by a fusion event? — Endocytobiosis Cell Research6: 1–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montenari, M., Leppig, U. Die Acritarcha: ihre Klassifikation, Morphologie, Ultrastruktur und paläoökologische/paläogeographische Verbreitung. Paläontol Z 77, 173–193 (2003). https://doi.org/10.1007/BF03004567

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03004567

Keywords

Schlüsselwörter

Navigation