Skip to main content
Log in

Cytokines Regulate Development of Human Mast Cells from Hematopoietic Progenitors

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Combination of stem cell factor (SCF) and interleukin-6 (IL-6) significantly promoted proliferation of human mast cells from cord blood CD34+ cells. Most of the cells, cultured in the presence of SCF and IL-6 for 10 weeks, expressedc-kit and contained a significant amount of histamine and tryptase and a low amount of chymase. Both tryptase-positive chymase-negative mast cells (MCT) and tryptase-positive chymase-positive mast cells (MCTC) were found in the same colony derived from a single cord blood CD34+ cell, suggesting that MCT and MCTC develop from common precursor cells. Single-cell culture of CD34+ cells revealed that committed mast cell progenitors are included in CD34+CD38+HLA-DR cells. IL-4 significantly enhanced high-affinity immunoglobulin E (IgE) receptor (FcεRI) α-chain messenger RNA expression and induced FcεRI on SCF-dependent cord blood-derived human mast cells, resulting in high histamine-releasing activity upon cross-linking of FcεRI. Another factor that up-regulated FcεRI was IgE, and a combination of IL-4 and IgE markedly augmented FcεRI expression on the mast cells. IL-4 and IgE may enhance FcεRI expression by distinct mechanisms; IL-4 promotes FcεRI α-chain gene transcription and thus increases α-chain protein synthesis in the cells, whereas the binding of IgE may anchor the FcεRI on the cell surface, resulting in suppression of internalization of FcεRI. Mast cells are progeny of hematopoietic stem cells. Recent discovery of a xenotransplantation model revealed that human hematopoietic stem cells can proliferate and differentiate into mature mast cells in the mouse skin 3 months after transplantation of human cord blood CD34+ cells, suggesting that this model may pave the way to clarification of the functions of human mast cells in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ishizaka T, Ishizaka K.Activation of mast cells for mediator release through IgE receptors.Prog Allergy. 1984;34:188–235.

    PubMed  CAS  Google Scholar 

  2. Ishizaka T, Conrad DH, Schulman ES, Sterk AR, Ko CG, Ishizaka K. IgE-mediated triggering signals for mediator release from human mast cells and basophils.Fed Proc. 1984;43:2840–2845.

    PubMed  CAS  Google Scholar 

  3. Moller A, Henz BM, Grutzkau A, et al. Comparative cytokine gene expression: regulation and release by human mast cells.Immunology. 1998;93:289–295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kitamura Y, Yokoyama M, Matsuda H, Ohno T, Mori KJ. Spleen- colony forming cell as common precursor for tissue mast cells and granulocytes.Nature. 1981;291:159.

    Article  PubMed  CAS  Google Scholar 

  5. Nakahata T, Spicer SS, Cantey JR, Ogawa M. Clonal assay of mouse mast cell colonies in methylcellulose culture.Blood. 1982; 60:352–361.

    PubMed  CAS  Google Scholar 

  6. Furitsu T, Saito H, Dvorak AM, et al. Development of human mast cellsin vitro.Pro Natl Acad Sci U S A. 1989;86:10039–10043.

    Article  CAS  Google Scholar 

  7. Kirshenbaum AS, Kessler SW, Goff JP, Metcalfe DD. Demonstration of the origin of human mast cells from CD34+ bone marrow progenitor cells.J Immunol. 1991;146:1410–1415.

    PubMed  CAS  Google Scholar 

  8. Irani AA, Craig SS, Nilsson G, Ishizaka T, Schwartz LB. Characterization of human mast cells developmentin vitro from fetal liver cells co-cultured with murine 3T3 fibroblasts.Immunology. 1992; 77:136–143.

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Valent P, Spanblöchl E, Sperr WR, et al. Induction of differentiation of human mast cells from bone marrow and peripheral blood mononuclear cells by recombinant human stem cell factor/kit- ligand in long-term culture.Blood. 1992;80:2237–2245.

    PubMed  CAS  Google Scholar 

  10. Kirshenbaum AR, Goff JP, Kessler SW, Mican JM, Zsebo KM, Metcalfe DD. Effect of IL-3 and stem cell factor on the appearance of human basophils and mast cells from CD34+ pluripotent progenitor cells.J Immunol. 1992;148:772–777.

    PubMed  CAS  Google Scholar 

  11. Irani AM, Nilsson G, Miettinen U, et al. Recombinant human stem cell factor stimulates differentiation of mast cells from dispersed human fetal liver cells.Blood. 1992;80:3009–3021.

    PubMed  CAS  Google Scholar 

  12. Mitsui H, Furitsu T, Dvorak AM, et al. Development of human mast cells from umbilical cord blood cells by recombinant human and murinec-kit ligand.Proc Natl Acad Sci U S A. 1993;90:735–739.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Durand B, Migliacco G, Yee NS, et al. Long-term generation of human mast cells in serum free-cultures of CD34+ cord blood cells stimulated with stem cell factor and interleukin-3.Blood. 1994;84: 3667–3674.

    PubMed  CAS  Google Scholar 

  14. Nakahata T, Tsuji K, Tanaka R, et al. Synergy of stem cell factor and other cytokines in mast cell development. In: Kitamura Y, Yamamoto S, Galli SJ, Greaves MW, eds.Biological and Molecular Aspects of Mast Cell and Basophil Differentiation and Function. New York: Raven Press; 1995:13–24.

    Google Scholar 

  15. Yin T, Taga T, Tsang ML, Yasukawa K, Kishimoto T, Yang YC. Involvement of IL-6 signal transducer gp130 in IL-11-mediated signal transduction.J Immunol. 1993;151:2555–2561.

    PubMed  CAS  Google Scholar 

  16. Toru H, Ra C, Nonoyama S, Suzuki K, Yata J, Nakahata T. Induction of the high-affinity IgE receptor (FcεRI) on human mast cells by IL-4.Int Immunol. 1996;8:1367–1373.

    Article  PubMed  CAS  Google Scholar 

  17. Toru H, Kinashi T, Ra C, Nonoyama S, Yata J, Nakahata T. IL-4 induces homotypic aggregation of human cultured mast cells by promoting LFA-1/ICAM-1 adhesion molecules.Blood. 1997;89: 3296–3302.

    PubMed  CAS  Google Scholar 

  18. Toru H, Eguchi M, Matsumoto R, Yanagida M, Yata J, Nakahata T. IL-4 promotes the development of tryptase and chymase double- positive human mast cells accompanied by cell maturation.Blood. 1998;1:187–195.

    Google Scholar 

  19. Kampuraj D, Saito H, Kaneko A, et al. Characterization of masT-cell-committed progenitors present in human cord blood.Blood. 1999;93:3338–3346.

    Google Scholar 

  20. Valent P, Bettelheim P. Cell surface structures of human basophils and mast cells: biochemical and functional characterization.Adv Immunol. 1992;52:333–423.

    Article  PubMed  CAS  Google Scholar 

  21. Deaglio S, Morra M, Mallone R, et al. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member.J Immunol. 1998;160:395–402.

    PubMed  CAS  Google Scholar 

  22. Irani AM, Schwartz LB. Mast cell heterogeneity.Clin Exp Allergy. 1989;19:143–155.

    Article  PubMed  CAS  Google Scholar 

  23. Irani AM, Schechter NM, Craig SS, DeBlois G, Schwartz LB. Two types of mast cells that have distinct neutral protease compositions.Proc Natl Acad Sci U S A. 1986;83:4464–4468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Schwartz LB. Monoclonal antibodies against human mast cell tryptase demonstrate shared antigenic sites on subunits of tryptase and selective localization of enzyme to mast cells.J Immunol. 1985; 134:526–531.

    PubMed  CAS  Google Scholar 

  25. Schwartz LB. Mast cells: function and contents.Curr Opin Immunol. 1994;6:91–97.

    Article  PubMed  CAS  Google Scholar 

  26. Craig SS, Schechter NM, Schwartz LB. Ultrastructural analysis of human T and TC mast cells identified by immunoelectron microscopy.Lab Invest. 1988;58:682–691.

    PubMed  CAS  Google Scholar 

  27. Craig SS, Schechter NM, Schwartz LB. Ultrastructural analysis of maturing human T and TC mast cellsin situ.Lab Invest. 1989;60: 147–157.

    PubMed  CAS  Google Scholar 

  28. Ishizaka T, Mitsui H, Yanagida M, Miura T, Dvorak AM. Development of human mast cells from their progenitors.Curr Opin Immunol. 1993;5:937–943.

    Article  PubMed  CAS  Google Scholar 

  29. Dvorak AM. Human mast cells, Ultrastructural observation ofin situ, ex vivo, andin vitro sites, sources, and systems. In: Kaliner MA, Metcalfe DD, eds.The Mast Cell in Health and Disease. New York: Marcel Dekker; 1992:1–90.

    Google Scholar 

  30. Dvorak AM, Massey W, Warner J, Kissell S, Kagey-Sobotka A, Lichtenstein LM. IgE-mediated anaphylactic degranulation of isolated human skin mast cells.Blood. 1991;77:569–578.

    PubMed  CAS  Google Scholar 

  31. Dvorak AM, Furitu T, Ishizaka T. Ultrastructural morphology of human mast cell progenitors in sequential cocultures of cord blood cells and fibroblasts.Int Arch Allergy Immunol. 1993;100:219–229.

    Article  PubMed  CAS  Google Scholar 

  32. Dvorak AM, Seder RA, Paul WE, Morgan ES, Galli SJ. Effects of interleukin-3 with or without thec-kit ligand, stem cell factor, on the survival and cytoplasmic granule formation of mouse basophils and mast cellsin vitro.Am J Pathol. 1994;144:160–170.

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Nakano T, Sonoda T, Hayashi C, et al. Fate of bone marrow- derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice.J Exp Med. 1985;162:1025–1043.

    Article  PubMed  CAS  Google Scholar 

  34. Kobayashi T, Nakano T, Nakahata T, et al. Formation of mast cell colonies in methylcellulose by mouse peritoneal cells and differentiation of these cloned cells in both the skin and the gastric mucosa of W/Wv mice: evidence that a common precursor can give rise to both “connective tissue-type” and “mucosal” mast cells.J Immunol. 1986;136:1378–1384.

    PubMed  CAS  Google Scholar 

  35. Gurich MF, Pear WS, Stevens RL, et al. Tissue-regulated differentiation and maturation of av-abl-immortalized mast cell-committed progenitor.Immunity. 1995;3:175–186.

    Article  Google Scholar 

  36. Levi-Schaffer F, Austen KF, Gravallese PM, Stevens RL. Coculture of interleukin 3-dependent mouse mast cells with fibroblasts results in a phenotypic change of the mast cells.Proc Natl Acad Sci U S A. 1986;83:6485–6488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Tsai M,Takeishi T, Thompson H, et al. Induction of mast cell proliferation, maturation, and heparin synthesis by the ratc-kit ligand, stem cell factor.Proc Natl Acad Sci U S A. 1991;88:6382–6386.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gurish MF, Ghildyal N, McNeil HP, Austen KF, Gillis S, Stevens RL. Differential expression of secretary granule proteases in mouse mast cells exposed to interleukin 3 andc-kit ligand.J Exp Med. 1992;175:1003–1012.

    Article  PubMed  CAS  Google Scholar 

  39. Ghildyal N, McNeil HP, Stechschulte S, et al. IL-10 induces transcription of the gene for the mouse mast cell protease-1, a serine protease preferentially expressed in mucosal mast cells ofTrichinella spirallis-infected mice.J Immunol. 1992;149:2123–2129.

    PubMed  Google Scholar 

  40. Ghildyal N, McNeil HP, Gurish MF, Austen KF, Stevens RL. Transcriptional regulation of the mucosal mast cell-specific protease gene, MMCP-2, by interleukin 10 and interleukin 3.J Biol Chem. 1992;267:8473–8477.

    PubMed  CAS  Google Scholar 

  41. Eklund KK, Ghildyal N, Austen KF, Stevens RL. Induction by IL-9 and suppression by IL-3 and IL-4 of the levels of chromosome 14- derived transcripts that encode late-expressed mouse mast cell proteases.J Immunol. 1993;151:4266–4273.

    PubMed  CAS  Google Scholar 

  42. Friend DS, Ghildyal N, Austen KF, Gurish MF, Matsumoto R, Stevens RL. Mast cells that reside at different locations in the jejunum of mice infected withTrichinella spiralis exhibit sequential changes in their granule ultrastructure and chymase phenotype.J Cell Biol. 1996;135:279–290.

    Article  PubMed  CAS  Google Scholar 

  43. Schwartz LB, Irani AM, Roller K, Castells MC, Schechter M. Quantitation of histamine, tryptase, and chymase in dispersed human T and TC mast cells.J Immunol. 1987;138:2611–2615.

    PubMed  CAS  Google Scholar 

  44. Valent P, Bevec D, Maurer D, et al. Interleukin 4 promotes expression of mast cell ICAM-1 antigen.Proc Natl Acad Sci U S A. 1991; 88:3339–3342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sillaber C, Strobl H, Bevec D, et al. IL-4 regulatesc-kit proto-onco- gene product expression in human mast and myeloid progenitor cells.J Immunol. 1991;147:4224–4228.

    PubMed  CAS  Google Scholar 

  46. Blank U, Ra C, Miller L, White K, Metzger H, Kinet JP. Complete structure and expression in transfected cells of high affinity IgE receptor.Nature. 1989;337:187–189.

    Article  PubMed  CAS  Google Scholar 

  47. Lin S, Cicala C, Scharenberg A, Kinet J-P. The atopy-associated FcεRIβ chain gene: the encoded subunit functions as an amplifier of FceRI γ-mediated cell activation signals.Cell. 1996;85:985–995.

    Article  PubMed  CAS  Google Scholar 

  48. Dombrowicz D, Flamard V, Brigman KK, Koller BH, Kinet J-P. Abolition of anaphylaxis by targeted disruption of the high affinity immunoglobulin E receptor A chain gene.Cell. 1993;75:969–976.

    Article  PubMed  CAS  Google Scholar 

  49. Takai T, Li M, Sylvestre D, Clynes R, Ravetch J. FcR gamma chain deletion results in pleitropic effector cell defects.Cell. 1994;76: 519–529.

    Article  PubMed  CAS  Google Scholar 

  50. Ravetch JV. Fc receptors: rubor redox.Cell. 1994;78:553–560.

    Article  PubMed  CAS  Google Scholar 

  51. Nilsson G, Forsberg K, Bodger MP, et al. Phenotypic characterization of stem cell factor-dependent human foetal liver-derived mast cells.Immunology. 1993;79:325–330.

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Banks EM, Coleman JW. A comparative study of peritoneal mast cells from mutant IL-4 deficient and normal mice: evidence that IL-4 is not essential for mast cell development but enhances secretion via control of IgE binding and passive sensitization.Cytokine. 1996;8:190–196.

    Article  PubMed  CAS  Google Scholar 

  53. Xia H-Z, Du Z, Craig S, et al. Effect of recombinant human IL-4 on tryptase, chymase, and Fcε receptor type I expression in recombinant human stem cell factor-dependent fetal liver-derived human mast cells.J Immunol. 1997;159:2911–2921.

    PubMed  CAS  Google Scholar 

  54. Bieber T. Fc epsilon RI on human epidermal Langerhans cells: an old receptor with new structure and functions.Int Arch Allergy Immunol. 1997;113:30–34.

    Article  PubMed  CAS  Google Scholar 

  55. Terada N, Konno A,Terada Y, et al. IL-4 upregulates FcεRI α-chain messenger RNA in eosinophils.J Allergy Clin Immunol. 1995;96: 1161–1169.

    Article  PubMed  CAS  Google Scholar 

  56. Yamaguchi M, Lantz CS, Oettgen HC, et al. IgE enhances mouse mast cell FcεRI expression in vitro and in vivo: evidence for a novel amplification mechanism in IgE-dependent reactions.J Exp Med. 1997;185:663–672.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hsu C, MacGlasham D Jr. IgE antibody up-regulates high affinity IgE binding on murine bone marrow derived mast cells.Immunol Lett. 1996;52:129–134.

    Article  PubMed  CAS  Google Scholar 

  58. Yamaguchi M, Sayama K, Yano K, et al. IgE enhances Fce receptor 1 expression and IgE-dependent release of histamine and lipid mediators from human umbilical cord blood-derived mast cells; synergistic effect of IL-4 and IgE on human mast cell Fce receptor 1 expression and mediator release.J Immunol. 1999;162:5455–5465.

    PubMed  CAS  Google Scholar 

  59. Daëron M, Latour S, Malbec O, et al. The same tyrosine-based inhibition motif, in the intracytoplasmic domain of FcγRII, regulates negatively BCR-,TCR-, and FcR-dependent cell activation.Immunity. 1995;3:635–646.

    Article  PubMed  Google Scholar 

  60. Daëron M, Malbec O, Latour S, Arock M, Fridman WH. Regulation of high-affinity IgE receptor-mediated mast cell activation by murine low-affinity IgG receptors.J Clin Invest. 1995;95:577–585.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Takai T, Ono M, Hikida M, Ohmori H, Ravetch JV. Augmented humoral and anaphylactic responses in FcγRII-deficient mice.Nature. 1996;379:346–349.

    Article  PubMed  CAS  Google Scholar 

  62. Van den Herik-Oudijk IE, Westerdaal NAC, Henriquez NV, Capel PJA, Van de Winkel JGJ. Functional analysis of human FcγRII (CD32) isoforms expressed in B lymphocytes.J Immunol. 1994; 152:574–585.

    Google Scholar 

  63. McNiece IK, Stewart FM, Deacon DM, et al. Detection of a human CFC with a high proliferative potential.Blood. 1989;74:609–612.

    PubMed  CAS  Google Scholar 

  64. Nakahata T, Ogawa M. Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors.J Clin Invest. 1982;70: 1324–1328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Sutherland HJ, Eaves CJ, Eaves AC, Dragowska W, Lansdorp PM. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro.Blood. 1989; 74:1563–1570.

    PubMed  CAS  Google Scholar 

  66. Ploemacher RE, Van der Sluijs JP, Voerman JS, Brons NH. An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse.Blood. 1989;74:2755–2763.

    PubMed  CAS  Google Scholar 

  67. Larochelle A, Vormoor J, Hanenberg H, et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy.Nat Med. 1996;2:1329–1337.

    Article  PubMed  CAS  Google Scholar 

  68. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice.Proc Natl Acad Sci U S A. 1997;94: 5320–5325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Gan OI, Murdoch B, Larochelle A, Dick JE. Differential maintenance of primitive human SCID-repopulating cells, clonogenic progenitors, and long-term culture-initiating cells after incubation on human bone marrow stromal cells.Blood. 1997;90:641–650.

    PubMed  CAS  Google Scholar 

  70. Wang JC, Doedens M, Dick JE. Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay.Blood. 1997;89:3919–3924.

    PubMed  CAS  Google Scholar 

  71. Shultz LD, Schweitzer PA, Christianson SW, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice.J Immunol. 1995;154:180–191.

    PubMed  CAS  Google Scholar 

  72. Xu M, Tsuji K, Mukouyama Y, et al. Stimulation of mouse and human primitive hematopoiesis by murine embryonic aorta-gonad- mesonephros-derived stromal cells.Blood. 1998;192:2032–2040.

    Google Scholar 

  73. Ueda T, Tsuji K, Yoshino H, et al. Expansion of human NOD/ SCID-repopulating cells by stem cell factor, Flk2/Flt3 ligand, thrombopoietin, IL-6, and soluble IL-6 receptor.J Clin Invest. 2000;105:1013–1021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Ueda T, Yoshino H, Kobayashi K, et al. Hematopoietic repopulating ability of cord blood CD34(+) cells in NOD/Shi-scid mice.Stem Cells. 2000;18:204–213.

    Article  PubMed  CAS  Google Scholar 

  75. Yoshino H, Ueda T, Kawahata M, et al. Natural killer cell depletion by anti-asialo GM1 antiserum treatment enhances human hematopoietic stem cell engraftment in NOD/Shi-scid mice.Bone Marrow Transplant. 2000;26:1211–1216.

    Article  PubMed  CAS  Google Scholar 

  76. Nakahata T. Ex vivo expansion of human hematopoietic stem cells.Int J Hematol. 2001;73:6–13.

    Article  PubMed  CAS  Google Scholar 

  77. Tsai M,Takeishi T, Thompson H, et al. Induction of mast cell proliferation, maturation, and heparin synthesis by the ratc-kit ligand, stem cell factor.Proc Natl Acad Sci USA. 1991;88:6382–6386.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Iemura A, Tsai M, Ando A, Wershil BK, Galli SJ. Thec-kit ligand, stem cell factor, promotes mast cell survival by suppressing apoptosis.Am J Pathol. 1994:144:321–328.

    PubMed Central  PubMed  CAS  Google Scholar 

  79. Galli SJ, Tsai M, Wershil BK, et al. The effects of stem cell factor, the ligand for thec-kit receptor, on mouse and human mast cell development, survival, and function. In: Kitamura Y, Yamamoto S, Galli SJ, Greaves MW, eds.Biological and Molecular Aspects of Mast Cell and Basophil Differentiation and Function. New York: Raven Press; 1995:1–11.

    Google Scholar 

  80. Jacoby W, Cammarata PV, Findlay S, Pincus S. Anaphylaxis in mast cell-deficient mice.J Invest Dermatol. 1984;83:302–304.

    Article  PubMed  CAS  Google Scholar 

  81. Ha TY, Reed ND, Crowle PK. Immune response potential of mast cell-deficient W/Wv mice.Int Arch Allergy Appl Immunol. 1986;80: 85–94.

    Article  PubMed  CAS  Google Scholar 

  82. Ha TY, Reed ND. Systemic anaphylaxis in mast cell-deficient mice of W/Wv and Sl/Sld genotypes.Exp Cell Biol. 1987;55:63–68.

    PubMed  CAS  Google Scholar 

  83. Takeishi T, Martin TR, Katona IM, Finkelman FD, Galli SJ. Differences in the expression of cardiopulmonary alterations associated with anti-immunoglobulin E-induced or active anaphylaxis in mast cell-deficient and normal mice.J Clin Invest. 1991;88:598–608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Martin TR, Ando A, Takeishi T, Katona IM, Drazen JM, Galli SJ. Mast cells contribute to the changes in heart rate, but not hypotension or death, associated with active anaphylaxis in mice.J Immunol. 1993;151:367–376.

    PubMed  CAS  Google Scholar 

  85. Miyajima I, Dombrowicz D, Martin TR, Ravetch JV, Kinet J-P Galli SJ. Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and FcγRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis.J Clin Invest. 1997;99:901–914.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Oettgen HC, Martin TR, Wynshaw-Boris A, Deng C, Drazen JM, Leder P. Active anaphylaxis in IgE-deficient mice.Nature. 1994; 370:367–370.

    Article  PubMed  CAS  Google Scholar 

  87. Hazenbos WLW, Gessner JE, Hofhuis FMA, et al. Impaired IgG- dependent anaphylaxis and arthus reaction in FcγRIII (CD16) deficient mice.Immunity. 1996;5:181–188.

    Article  PubMed  CAS  Google Scholar 

  88. Echtenacher B, Männel DN, Hültner L. Critical protective role of mast cells in a model of acute septic peritonitis.Nature. 1996;381: 75–77.

    Article  PubMed  CAS  Google Scholar 

  89. Malaviya R, Ikeda T, Ross E, Abraham SN. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α.Nature. 1996;381:77–80.

    Article  PubMed  CAS  Google Scholar 

  90. Patella V, Bouvet J-P, Marone G. Protein Fv produced during viral hepatitis is a novel activator of human basophils and mast cells.J Immunol. 1993;151:5685–5698.

    PubMed  CAS  Google Scholar 

  91. Marone G, Casolaro V, Patella V, Florio G, Triggiani M. Molecular and cellular biology of mast cells and basophils.Int Arch Allergy Immunol. 1997;114:207–217.

    Article  PubMed  CAS  Google Scholar 

  92. Marone G. Asthma: recent advances.Immunol Today. 1998;19:5–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsutoshi Nakahata.

About this article

Cite this article

Nakahata, T., Toru, H. Cytokines Regulate Development of Human Mast Cells from Hematopoietic Progenitors. Int J Hematol 75, 350–356 (2002). https://doi.org/10.1007/BF02982123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02982123

Key words

Navigation