Skip to main content
Log in

Aptamers as functional nucleic acids:In vitro selection and biotechnological applications

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Aptamers are functional nucleic acids that can specially bind to proteins, peptides, amino acids, nucleotides, drugs, vitamins and other organic and inorganic compounds. The aptamers are identified from random DNA or RNA libraries by a SELEX (systematic evolution of ligands by exponential amplification) process. As aptamers have the advantage, and potential ability to be released from the limitations of antibodies, they are attractive to a wide range of therapeutic and diagnostic applications. Aptamers, with a high-affinity and specificity, could fulfil molecular the recognition needs of various fields in biotechnology. In this work, we reviewed some aptamer selection techniques, properties, medical applications of their molecules and their biotechnological applications, such as ELONA (enzyme linked oligonucleotide assay), flow cytometry, biosensors, electrophoresis, chromatography and microarrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robertson, D. L. and G. F. Joyce (1990) Selectionin vitro of an RNA enzyme that specifically cleaves single-stranded DNA.Nature 344: 467–468.

    CAS  Google Scholar 

  2. Ellington, A. D. and J. W. Szostak (1990)In vitro selection of RNA molecules that bind specific ligands.Nature 346: 818–822.

    CAS  Google Scholar 

  3. Tuerk, C. and L. Gold (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase.Science 249: 505–510.

    CAS  Google Scholar 

  4. Jayasena, S (1999) Aptamers: An emerging class of molecules that rival antibodies in diagnostics.Clin. Chem. 45: 1628–1650.

    CAS  Google Scholar 

  5. Geiger, A., P. Burgstaller, H. von der Eltz, A. Roeder, and M. Famulok (1996) RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity.Nucleic Acids Res. 24: 1029–1036.

    CAS  Google Scholar 

  6. Haller, A. A. and P. Sarnow (1997)In vitro selection of a 7-methyl-guanosine binding RNA that inhibits translation of capped mRNA molecules.Proc. Natl. Acad. Sci. USA 94: 8521–8526.

    CAS  Google Scholar 

  7. Kawakami, J., H. Imanaka, Y. Yokota, and N. Sugimoto (2001)In vitro selection of aptamers that act with Zn2+.J. Inorg. Biochem. 82: 197–206.

    Google Scholar 

  8. Gebhardt, K., A. Shokraei, G. Babane, and B. H. Lindquist (2000) RNA aptamers to S-adenosylhomocysteine: kinetic properties, divalent cation dependency, and comparison with anti-S-adenosylhomocysteine antibody.Biochemistry 39: 7255–7265.

    CAS  Google Scholar 

  9. Wilson, D. S., A. D. Keefe, and J. W. Szostak (2001) The use of mRNA display to select high-affinity protein-binding peptides.Proc. Natl. Acad. Sci. USA 98: 3750–3755.

    CAS  Google Scholar 

  10. Drolet, D. W., L. Moon-McDermott, and T. S. Romig (1996) An enzyme-linked oligonucleotide assay.Nature Biotechnol. 14: 1021–1025.

    CAS  Google Scholar 

  11. Davis, K. A., B. Abrams, Y. Lin, and S. D. Jayasena (1996) Use of a high affinity DNA ligand in flow cytometry.Nuclic Acids Res. 24: 702–706.

    CAS  Google Scholar 

  12. Davis, K. A., Y. Lin, B. Abrams, and S. D. Jayasena (1998) Staining of cell surface human CD4 with 2′-F-pyrimidine-containing RNA aptamers for flow cytometry.Nucleic Acids Res. 26: 3915–3924.

    CAS  Google Scholar 

  13. Radislav, R. A., R. C. Conrad, A. D. Ellington, and G. M. Hieftje. (1998) Adapting selected nucleic acid ligands (aptamers) to biosensors.Anal. Chem. 70: 3419–3425.

    Google Scholar 

  14. Weiss, S., D. Proske, M. Neumann, M. H. Groschup, H. A. Kretzschmar, M. Famulok, and E. L. Winnacker (1997) RNA aptamers specifically interact with the prion protein PrP.J. Virol. 71: 8790–8797.

    CAS  Google Scholar 

  15. Klug, S. J., A. Hüttenhofer, and M. Famulok (1999)In vitro selection of RNA aptamers that bind special elongation factor SelB, a protein with multiple RNA-binding sites, reveals one major interaction domain at the carboxyl terminus.RNA 5: 1180–1190.

    CAS  Google Scholar 

  16. Hicke, B. J., S. R. Watson, A. Koenig, C. K. Lynott, R. F. Bargatze, Y. F. Chang, S. Ringquist, L. Moon-McDermott, S. Jennings, T. Fitzwater, H. L. Han, N. Varki, I. Albinana, M. C. Willis, A. Varki, and D. Parma. (1996) DNA aptamers block L-selectin function in vivo. Inhibition of human lymphocyte trafficking in SCID mice.Clin. Invest. 98: 2688–2692.

    CAS  Google Scholar 

  17. Bell S. D., J. M. Denu, J. E. Dixon, and A. D. Ellington (1998) RNA molecules that bind to and inhibit the active site of a tyrosine phosphatase.J. Biol. Chem. 273: 14309–14314.

    CAS  Google Scholar 

  18. Wen, J. D., C. W. Gray, and D. M. Gray (2001) SELEX selection of high-affinity oligonucleotides for bacteriophage Ff gene 5 protein.Biochemistry 40: 9300–9310.

    CAS  Google Scholar 

  19. Latham, J. A., R. Johnson, and J. J. Toole (1994) The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing 5-(1-pentynyl)-2′-deoxyuridine.Nucleic Acids Res. 22: 2817–2822.

    CAS  Google Scholar 

  20. Mannironi, C., A. Di Nardo, P. Fruscoloni, and G. P. Tocchini-Valentini (1997)In vitro selection of dopamine RNA ligands.Biochemistry 36: 9726–9734.

    CAS  Google Scholar 

  21. Baskerville, S., M. Zapp, and A. D. Ellington (1999) Anti-Rex aptamers as mimics of the Rex-binding element.J. Virol. 73: 4962–4971.

    CAS  Google Scholar 

  22. Kraus, E., W. James, and A. N. Barclay (1998) Cutting edge: novel RNA ligands able to bind CD4 antigen and inhibit CD4 T lymphocyte function.J. Immunol. 160: 5209–5212.

    CAS  Google Scholar 

  23. Kimoto, M., K. Sakamoto, M. Shirouzu, I. Hirao, and S. Yokoyama (1998) RNA aptamers that specifically bind to the Ras-binding domain of Raf-1.FEBS Lett. 441: 322–326.

    CAS  Google Scholar 

  24. Geiger, A., P. Burgstaller, H. von der Eltz, A. Roeder, and M. Famulok (1996) RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity.Nucleic Acids Res. 24: 1029–1036.

    CAS  Google Scholar 

  25. Harada, K. and A. D. Frankel (1995) Identification of two novel arginine binding DNAs.EMBO J. 14: 5798–5811.

    CAS  Google Scholar 

  26. Majerfeld, I. and M. Yarus (1994) An RNA pocket for an aliphatic hydrophobe.Nat. Struct. Biol. 1: 287–292.

    CAS  Google Scholar 

  27. Famulok, M. and J. W. Szostak (1992) Stereospecific recognition of tryptophan agarose byin vitro selected RNA.J. Am. Chem. Soc. 14: 3990–3991.

    Google Scholar 

  28. Scarabino, D., A. Crisari, S. Lorenzini, K. Williams, and G. P. Tocchini-Valentini (1999) tRNA prefers to kiss.EMBO J. 18: 4571–4578.

    CAS  Google Scholar 

  29. Duconge, F. and J. J. Toulme (1999)In vitro selection identifies key determinants for loop-loop interactions: RNA aptamers selective for the TAR RNA element of HIV-1.RNA 5: 1605–1614.

    CAS  Google Scholar 

  30. Cox, J. C., P. Rudolph, and A. D. Ellington (1998) Automated RNA selection.Biotechnol. Prog. 14: 845–850.

    CAS  Google Scholar 

  31. Werstuck, G. and M. R. Green (1998) Controlling gene expression in living cells through small molecule-RNA interactions.Science 282: 296–298.

    CAS  Google Scholar 

  32. Yu, O., D. B. Pecchia, S. L. Kingsley, J. E. Heckman, and J. M. Burke (1998) Cleavage of highly structured viral RNA molecules by combinatorial libraries of hairpin ribozymes. The most effective ribozymes are not predicted by substrate selection rules.J. Biol. Chem. 273: 23524–23533.

    CAS  Google Scholar 

  33. Jiang, L., A. Majumdar, W. Hu, T. J. Jaishree, W. Xu, and D. J. Patel (1999) Saccharide-RNA recognition in a complex formed between neomycin B and an RNA aptamer.Structure Fold Des. 7: 817–827.

    CAS  Google Scholar 

  34. Bachler, M., R. Schroeder, and U. von Ahsen (1999) StreptoTag: a novel method for the isolation of RNA-binding proteins.RNA 5: 1509–1516.

    CAS  Google Scholar 

  35. Jiang, L. and D. J. Patel (1998) Solution structure of the tobramycin-RNA aptamer complex.Nat. Struct. Biol. 5: 769–774.

    CAS  Google Scholar 

  36. Berens, C., A. Thain, and R. Schroeder. (2001) A tetracycline-binding RNA aptamer.Bioorg. Med. Chem. 9: 2549–2556.

    CAS  Google Scholar 

  37. Lato, S. M., A. R. Boles, and A. D. Ellington (1995)In vitro selection of RNA lectins: using combinatorial chemistry to interpret ribozyme evolution.Chem. Biol. 2: 291–303.

    CAS  Google Scholar 

  38. Lorsch, J. R. and J. W. Szostak (1994)In vitro selection of RNA aptamers specific for cyanocobalamin.Biochemistry 33: 973–982.

    CAS  Google Scholar 

  39. Wilson, C., J. Nix, and J. W. Szostak (1998) Functional requirements for specific ligand recognition by a biotinbinding RNA pseudoknot.Biochemistry 37: 14410–14419.

    CAS  Google Scholar 

  40. Lorsch, J. R. and J. W. Szostak (1994)in vitro evolution of new ribozymes with polynucleotide kinase activity.Nature 371: 31–36.

    CAS  Google Scholar 

  41. Araki, M., Y. Okuno, Y. Hara, and Y. Sugiura (1998) Allosteric regulation of a ribozyme activity through ligand-induced conformational change.Nucleic Acids Res. 26: 3379–3384.

    CAS  Google Scholar 

  42. Zimmermann, G. R., T. P. Shields, R. D. Jenison, C. L. Wick, and A. Pardi (1998) A semiconserved residue inhibits complex formation by stabilizing interactions in the free state of a theophylline-binding RNA.Biochemistry 37: 9186–9192.

    CAS  Google Scholar 

  43. Ellington, A. D. and J. W. Szostak (1992) Selectionin vitro of single-stranded DNA molecules that fold into specific ligand-binding structures.Nature 355: 850–852.

    CAS  Google Scholar 

  44. Baugh, C., D. Grate, and C. Wilson (2000) 2.8 A crystal structure of the malachite green aptamer.J. Mol. Biol. 301: 117–128.

    CAS  Google Scholar 

  45. Faulhammer, D. and M. Famulok (1997) Characterization and divalent metal-ion dependence ofin vitro selected deoxyribozymes which cleave DNA/RNA chimeric oligonucleotides.J. Mol. Biol. 269: 188–202.

    CAS  Google Scholar 

  46. Romig, T. S., C. Bell, and D. W. Drolet (1999) Aptamer affinity chromatography: combinatorial chemistry applied to protein purification.J. Chromatogr. B: Biomed. Sci. Appl. 731: 275–284

    CAS  Google Scholar 

  47. Wiegand, T. W., P. B. Williams, S. C. Dreskin, M. H. Jouvin, J. P. Kinet, and D. Tasset (1996) High-affinity oligonucleotide ligands to human IgE inhibit binding to Fce receptor I.J. Immunol. 157: 221–230.

    CAS  Google Scholar 

  48. Ayre, B. G., U. Kohler, H. M. Goodman, and J. Haseloff (1999) Design of highly specific cytotoxins by using transsplicing ribozymes.Proc. Natl. Acad. Sci. USA 96: 3507–3512.

    CAS  Google Scholar 

  49. Lan, N., B. L. Rooney, S. W. Lee, R. P. Howrey, C. A. Smith, and B. A. Sullenger (2000) Enhancing RNA repair efficiency by combining trans-splicing ribozymes that recognize different accessible sites on a target RNA.Mol. Ther. 2: 245–255.

    CAS  Google Scholar 

  50. Clark, S. L. and V. T. Remcho (2002) Aptamers as analytical reagents.Electrophoresis 23: 1335–1340.

    CAS  Google Scholar 

  51. Patel, D. J. (1997) Structure analysis of nucleic acid aptamers.Curr. Opin. Chem. Biol. 1: 32–46.

    CAS  Google Scholar 

  52. Sussman, D., J. C. Nix, and C. Wilson (2000) The structural basis for molecular recognition by the vitamin B12 RNA aptamer.Nat. Struct. Biol. 7: 53–57.

    CAS  Google Scholar 

  53. Bittker, J. A., B. V. Le, and D. R. Liu (2002) Nucleic acid evolution and minimization by nonhomologous random recombination.Nat. Biotechnol. 20: 1024–1029.

    CAS  Google Scholar 

  54. Cadwell, R. C. and G. F. Joyce (1994) Mutagenic PCR.PCR Methods Appl. 3: S136–140.

    Google Scholar 

  55. Stemmer, W. P. (1994) Rapid evolution of a proteinin vitro by DNA shuffling.Nature 370: 389–391.

    CAS  Google Scholar 

  56. Osborne, S. E., I. Matsumura, and A. D. Ellington (1997) Aptamers as therapeutic and diagnostic reagents: problems and prospects.Curr. Opin. Chem. Biol. 1: 5–9.

    CAS  Google Scholar 

  57. Kubik, M. F., C. Bell, T. Fitzwater, S. R. Watson, and D. M. Tasset. (1997) Isolation and characterization of 2′-fluoro-, 2′-amino-, and 2′-fluoro-/amino-modified RNA ligands to human IFN-gamma that inhibit receptor binding.J. Immunol. 159: 259–267.

    CAS  Google Scholar 

  58. James, W. (2000) Aptamers. InEncyclopedia of analytical chemistry. R. A. Meyers (Ed.) pp. 4848–4871, John Wiley & Sons Ltd, Chichester, Canada.

    Google Scholar 

  59. Hesselberth, J. R., D. Miller, J. Robertus, and A. D. Ellington (2000)In vitro selection of RNA molecules that inhibit the activity of ricin A-chain.J. Biol. Chem. 275: 4937–4942.

    CAS  Google Scholar 

  60. Kensch, O., B. A. Connolly, H. J. Steinhoff, A. McGregor, R. S. Goody, and T. Restle (2000) HIV-1 reverse transcriptase-pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity.J. Biol. Chem. 275: 18271–18278.

    CAS  Google Scholar 

  61. Hwang J, H. Fauzi, K. Fukuda, S. Sekiya, N. Kakiuchi, K. Shimotohno, K. Taira, I. Kursakabe, and S. Nishikawa (2000) The RNA aptamer-binding site of hepatitis C virus NS3 protease.Biochem. Biophys. Res. Commun. 279: 557–562.

    CAS  Google Scholar 

  62. Wang, J., H. Jiang, and F. Liu (2000)In vitro selection of novel RNA ligands that bind human cytomegalovirus and block viral infection.RNA 6: 571–583.

    CAS  Google Scholar 

  63. Jeong, S., T. Eom, S. Kim, S. Lee, and J. Yu (2001)In vitro selection of the RNA aptamer against the Sialyl lewis X and its inhibition of the cell adhesion.Biochem. Biophys. Res. Commun. 281: 237–243.

    CAS  Google Scholar 

  64. James, W. (2001) Nucleic acid and polypeptide aptamers: A powerful approach to ligand discovery.Curr. Opin. Pharmacol. 1: 540–546.

    CAS  Google Scholar 

  65. White, R. R., B. A. Sullenger, and C. P. Rusconi (2000) Developing aptamers into therapeutics.J. Clin. Invest. 106: 929–934.

    CAS  Google Scholar 

  66. Beigelman, L., J. A. Mcswiggen, K. G. Draper, C. Gonzalez, K. Jensen, A. M. Karpeisky, A. S. Modak, J. Matulicadamic, A. B. Direnzo, P. Haeberli, D. Sweedler, D. Tracz, S. Grimm, F. E. Wincott, V. G. Thackray, and N. Usman (1995) Chemical modification of hammerhead ribozymes: Catalytic activity and nuclease resistance.J. Biol. Chem. 270: 25702–25708.

    CAS  Google Scholar 

  67. Jellinek, D., L. S. Green, C. Bell, C. K. Lynott, N. Gill, C. Vargeese, G. Kirschnheuter, D. P. C. Mcgee, P. Abesinghe, W. A. Pieken, R. Shapiro, D. B. Rifken, D. Moscatelli, and N. Janjic (1995) Potent 2′-amino-2′-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor.Biochemistry 34: 11363–11372.

    CAS  Google Scholar 

  68. Rhodes, A., A. Deakin, J. Spaull, B. Coomber, A. Aitken, P. Life, and S. Rees (2000) The generation and characterization of antagonist RNA aptamers to human oncostatin M.J. Biol. Chem. 5: 28555–28561.

    Google Scholar 

  69. Tucker, C. E., L. S. Chen, M. B. Judkins, J. A. Farmer, S. C. Gill, and D. W. Drolet (1999) Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys.J. Chromatogr. B: Biomed. Sci. Appl. 732: 203–212.

    CAS  Google Scholar 

  70. Floege, J., T. Ostendorf, U. Janssen, M. Burg, H. H. Radeke, C. Vargeese, S. C. Gill, L. S. Green, and N. Janjin (1999) Novel approach to specific growth factor inhibitionin vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers.Am. J. Pathol. 154: 169–179.

    CAS  Google Scholar 

  71. Willis, M. C., B. D. Collins, T. Zhang, L. H. Green, D. P. Sebesta, C. Bell, E. Kellogg, S. C. Gill, A. Magallanez, S. Knauer, R. A. Bendele, P. S. Gill, N. Janjic, and B. Collins (1998) Liposome-anchored vascular endothelial growth factor aptamers.Bioconjug. Chem. 9: 573–582.

    CAS  Google Scholar 

  72. Bock, L. C., L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin.Nature 355: 564–566.

    CAS  Google Scholar 

  73. Li, W. X., A. V. Kaplan, G. W. Grant, J. J. Toole, and L. L. A. Leung (1994) novel nucleotide-based thrombin inhibitor inhibits clot-bound thrombin and reduces arterial platelet thrombus formation.Blood 83: 677–682.

    CAS  Google Scholar 

  74. Rusconi, C. P., A. Yeh, H. K. Lyerly, J. H. Lawson, and B. A. Sullenger (2000) Blocking the initiation of coagulation by RNA aptamers to factor VIIa.Thromb. Haemostasis 84: 841–848.

    CAS  Google Scholar 

  75. Kim, K. J., B. Li, J. Winer, M. Armanini, N. Gillett, H. S. Phillips, and N. Ferrara (1993) Inhibition of vascular endothelial growth factor induced angiogenesis suppresses tumour growthin vivo.Nature 362: 841–844.

    CAS  Google Scholar 

  76. Ruckman, J., L. S. Green, J. Beeson, S. Waugh, W. L. Gillette, D. D. Henninger, L. Claesson-Welsh, and N. Janjic (1998) 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced ascular permeability through interactions requiring the exon 7-encoded domain.J. Biol. Chem. 273: 20556–20567.

    CAS  Google Scholar 

  77. Drolet, D. W., J. Nelson, C. E. Tucker, P. M. Zack, K. Nixon, R. Bolin, M. B. Judkins, J. A. Farmer, J. L. Wolf, and S. C. Gill (2000) Pharmacokinetics and safety of an anti-vascular endothelial growth factor aptamer (NX1838) following injection into the vitreous humor of rhesus monkeys.Pharm. Res. 17: 1502–1510.

    Google Scholar 

  78. Jenison, R. D., S. C. Gill, A. Pardi, and B. Polisky (1994) High-resolution molecular discrimination by RNA.Science 263: 1425.

    CAS  Google Scholar 

  79. Lowe, G. (1999) Oligomeric and biogenetic combinatorial libraries.Nat. Prod. Rep. 16: 641–651.

    CAS  Google Scholar 

  80. Fitzwater, T. and B. A. Polisky (1996) SELEX primer.Methods Enzymol. 267: 275–301.

    CAS  Google Scholar 

  81. Dougan, H., J. B. Hobbs, J. I. Weitz, and D. M. Lyster (1997) Synthesis and radioiodination of a stannyl oligodeoxyribonucleotide.Nucleic Acids Res. 25: 2897–2901.

    CAS  Google Scholar 

  82. Huang Z. and J. A. Szostak (1996) Simple method for 30-labeling of RNA.Nucleic Acids Res. 24: 4360–4361.

    CAS  Google Scholar 

  83. Rosemeyer, V., A. Laubrock, and R. Seibl (1995) Nonradioactive 3’-end labeling of RNA molecules of different lengths by terminal deoxynucleotidyl transferase.Anal. Biochem. 224: 446–449.

    CAS  Google Scholar 

  84. Davis, K. A., Y. Lin, B. Abrams, and S. D. Jayasena (1998) Staining of cell surface human CD4 with 2’-F-pyrimidine containing RNA aptamers for flow cytometry.Nucleic Acids Res. 26: 3915–3924.

    CAS  Google Scholar 

  85. Drolet, D. W., L. Moon-McDermott, T. S. Romig (1996) An enzyme-linked oligonucleotide assay.Nat. Biotechnol. 14: 1021–1025.

    CAS  Google Scholar 

  86. Lochrie, M. A., S. Waugh, D. G. Pratt, J. Jr. Clever, T. G. Parslow, and B. Polisk, B. (1997)In vitro selection of RNAs that bind to the human immunodeficiency virus type-1 gag polyprotein.Nucleic Acids Res. 25: 2902–2910.

    CAS  Google Scholar 

  87. Tasset, D. M., M. F. Kubik, and W. Steiner (1997) Oligonucleotide inhibitors of human thrombin that bind distinct epitopes.J. Mol. Biol. 272: 688–698.

    CAS  Google Scholar 

  88. O’Sullivan, C. K. (2002) Aptasensors-The fure of biosensing?Anal. Bioanal. Chem. 372: 44–48.

    Google Scholar 

  89. Ringquist, S. and D. Parma (1998) Anti-L-selectin oligonucleotide ligands recognize CD62L-positive leukocytes: binding affinity and specificity of univalent and bivalent ligands.Cytometry 33: 394–405.

    CAS  Google Scholar 

  90. Lin, Y., A. Padmapriya, K. M. Morden, and S. D. Jayasena (1995) Peptide conjugation to anin vitro-selected DNA ligand improves enzyme inhibition.Proc. Natl. Acad. Sci. USA 92: 11044–11048.

    CAS  Google Scholar 

  91. Kleinjung, F., S. Klussman, V. A. Erdmann, F. W. Scheller, J. P. Furste, and F. F. Bier (1998) High-affinity RNA as a recognition element in a biosensor.Anal. Chem. 70: 328–331.

    CAS  Google Scholar 

  92. Potyrailo, R. A., R. C. Conrad, A. D. Ellington, and G. M. Hieftje (1998) Adapting selected nucleic acid ligands (aptamers) to biosensors.Anal. Chem. 70: 3419–2345.

    CAS  Google Scholar 

  93. Lee, M. and D. R. Walt (2000) A fiber-optic microarray biosensor using aptamers as receptors.Anal. Biochem. 282: 142–146.

    CAS  Google Scholar 

  94. Yamamoto, R. and P. K. R. Kumar (2000) Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1.Genes Cells 5: 389–396.

    CAS  Google Scholar 

  95. German I., D. D. Buchanan, and R. T. Kennedy (1998) Aptamers as ligands in affinity probe capillary electrophoresis.Anal. Chem. 70: 4540–4545.

    CAS  Google Scholar 

  96. Kotia, R. B., L. Li, and L. B. McGown (2000) Separation of nontarget compounds by DNA aptamers.Anal. Chem. 72: 827–831.

    CAS  Google Scholar 

  97. Rehder, M. A. and L. B. McGown (2001) Open-tubular capillary electrochromatography of bovine beta-lactoglobulin variants A and B using aptamer stationary phase.Electrophoresis 22: 3759–3764.

    CAS  Google Scholar 

  98. O’Donnell, M. J., K. Tang, H. Koster, C. L. Smith, and C. R. Cantor (1997) High density, covalent attachment of DNA to silicon wafers for analysis by MALDI-TOF mass spectrometry.Anal. Chem. 69: 2438–2443.

    Google Scholar 

  99. Deng, O., I. German, D. Buchanan, and R. T. Kennedy (2001) Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase.Anal. Chem. 73: 5415–5421.

    CAS  Google Scholar 

  100. Sassanfar, M. and J. W. Szostak (1993) An RNA motif that binds ATP.Nature 364: 550–553.

    CAS  Google Scholar 

  101. Huizenga, D. E. and J. W. Szostak (1995) A DNA aptamer that binds adenosine and ATP.Biochemistry 34: 656–665.

    CAS  Google Scholar 

  102. Dove, A. (1999) Proteomics: translating genomics into products?Nat. Biotechnol. 17: 233–236.

    CAS  Google Scholar 

  103. Golden, M. C., B. D. Collins, M. C. Willis, and T. H. Koch (2000) Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers.J. Biotechnol. 81: 167–178.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Bok Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, K.M., Lee, S.H., Im, A. et al. Aptamers as functional nucleic acids:In vitro selection and biotechnological applications. Biotechnol Bioproc E 8, 64–75 (2003). https://doi.org/10.1007/BF02940259

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02940259

Keywords

Navigation