Skip to main content
Log in

Methodology for quantifying absolute myocardial perfusion with PET and SPECT

  • Nuclear Cardiology
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Noninvasive quantitative measurement of myocardial perfusion has played an important role in cardiac research and also has potential applications in clinical imaging. Positron emission tomography (PET) methods for measuring absolute perfusion are well established, although the need for an on-site cyclotron has restricted its use to a limited number of centers. Single-photon emission CT (SPECT) also has potential for quantifying myocardial perfusion and has more widespread availability. In this article we review the basic principles of absolute myocardial perfusion quantification and the radiopharmaceuticals that are available for both PET and SPECT. We also examine the extent to which recent developments in instrumentation have increased the practicality of absolute perfusion quantification in PET and the potential for absolute quantification in SPECT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Ficaro EP, Corbett JR:Advances in quantitative perfusion SPECT imaging.J Nucl Cardiol 2004,11:62–70.

    Article  PubMed  Google Scholar 

  2. Germano G, Berman DS:Quantitative single-photon emission computed tomography imaging.Curr Cardiol Rep 2005,7:136–142.

    Article  PubMed  Google Scholar 

  3. Of major importance Kaufmann PA, Camici PG:Myocardial blood flow measurement by PET: Technical aspects and clinical applications.J Nucl Med 2005,46:75–88. This paper reviews the use of quantitative myocardial perfusion PET in clinical research.

    PubMed  Google Scholar 

  4. Tamaki N, Kuge Y, Tsukamoto E:The road to quantitation of regional myocardial uptake of tracer.J Nucl Med 2001,42:780–781.

    PubMed  CAS  Google Scholar 

  5. Uren NG, Melin JA, De Bruyne B, et al.:Relation between myocardial blood flow and the severity of coronary-artery stenosis.N Engl J Med 1994,330:1782–1788.

    Article  PubMed  CAS  Google Scholar 

  6. Dayanikli F, Grambow D, Muzik O, et al.:Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography.Circulation 1994,90:808–817.

    PubMed  CAS  Google Scholar 

  7. Huggins GS, Pasternak RC, Alpert NM, et al.:Effects of short-term treatment of hyperlipidemia on coronary vasodilator function and myocardial perfusion in regions having substantial impairment of baseline dilator reserve.Circulation 1998,98:1291–1296.

    PubMed  CAS  Google Scholar 

  8. Guethlin M, Kasel AM, Coppenrath K, et al.:Delayed response of myocardial flow reserve to lipid-lowering therapy with fluvastatin.Circulation 1999,99:475–481.

    PubMed  CAS  Google Scholar 

  9. Cerqueira MD, Weissman NJ, Dilsizian V, et al.:Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association.J Nucl Cardiol 2002,9:240–245.

    Article  PubMed  Google Scholar 

  10. Hove JD, Iida H, Kofoed KF, et al.:Left atrial versus left ventricular input function for quantification of the myocardial blood flow with nitrogen-13 ammonia and positron emission tomography.Eur J Nucl Med Mol Imaging 2004,31:71–76.

    Article  PubMed  Google Scholar 

  11. Madar I, Ravert HT, Du, Y et al.:Characterization of uptake of the new PET imaging compound 18F-fluorobenzyl triphenyl phosphonium in dog myocardium.J Nucl Med 2006,47:1359–1366.

    PubMed  CAS  Google Scholar 

  12. Bergmann SR, Herrero P, Markham J, et al.:Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography.J Am Coll Cardiol 1989,14:639–652.

    PubMed  CAS  Google Scholar 

  13. Iida H, Kanno I, Takahashi A, et al.:Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography: strategy for quantification in relation to the partial volume effect.Circulation 1988,78:104–115.

    PubMed  CAS  Google Scholar 

  14. Hermansen F, Ashburner J, Spinks TJ, et al.:Generation of myocardial factor images directly from the dynamic oxygen-15-water scan without use of an oxygen-15-carbon monoxide blood pool scan.J Nucl Med 1998,39:1696–1702.

    PubMed  CAS  Google Scholar 

  15. Watabe H, Jino H, Kawachi N, et al.:Parametric imaging of myocardial blood flow with 15O-water and PET using the basis function method.J Nucl Med 2005,46:1219–1224.

    PubMed  Google Scholar 

  16. Lee JS, Lee DS, Ahn JY, et al.:Generation of parametric image of regional myocardial blood flow using H215O dynamic PET and a linear least-squares method.J Nucl Med 2005,46:1687–1695.

    PubMed  Google Scholar 

  17. Schelbert HR, Phelps ME, Huang SC, et al.:N-13 ammonia as an indicator of myocardial blood flow.Circulation 1981,63:1259–1272.

    PubMed  CAS  Google Scholar 

  18. Bellina CR, Parodi O, Camici P, et al.:Simultaneous in vitro and in vivo validation of nitrogen-13-ammonia for the assessment of regional myocardial blood flow.J Nucl Med 1990,31:1335–1343.

    PubMed  CAS  Google Scholar 

  19. Hutchins GD, Schwaiger M, Rosenspire KC, et al.:Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging.J Am Coll Cardiol 1990,15:1032–1042.

    Article  PubMed  CAS  Google Scholar 

  20. Bol A, Melin JA, Vanoverschelde JL, et al.:Direct comparison of [13N]ammonia and [15O]water estimates of perfusion with quantification of regional myocardial blood flow by microspheres.Circulation 1993,87:512–525.

    PubMed  CAS  Google Scholar 

  21. Nitzsche EU, Choi Y, Czernin J, et al.:Noninvasive quantification of myocardial blood flow in humans: a direct comparison of the [13N]ammonia and the [15O]water techniques.Circulation 1996,93:2000–2006.

    PubMed  CAS  Google Scholar 

  22. Rosenspire KC, Schwaiger M, Mangner TJ, et al.:Metabolic fate of [13N]ammonia in human and canine blood.J Nucl Med 1990,31:163–167.

    PubMed  CAS  Google Scholar 

  23. Herrero P, Markham J, Shelton ME, et al.:Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography: exploration of a mathematical model.Circulation 1990,82:1377–1386.

    PubMed  CAS  Google Scholar 

  24. Goldstein RA, Mullani NA, Marani SK, et al.:Myocardial perfusion with rubidium-82. II. Effects of metabolic and pharmacologic interventions.J Nucl Med 1983,24:907–915.

    PubMed  CAS  Google Scholar 

  25. Of importance El Fakhri G, Sitek A, Guerin B, et al.:Quantitative dynamic cardiac 82Rb PET using generalized factor and compartment analyses.J Nucl Med 2005,46:1264–1271. This paper develops quantitative methods for82Rb PET using generalized factor analysis of dynamic sequences.

    PubMed  Google Scholar 

  26. Parkash R, deKemp RA, Ruddy TD, et al.:Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease.J Nucl Cardiol 2004,11:440–449.

    Article  PubMed  CAS  Google Scholar 

  27. Herrero P, Markham J, Weinheimer CJ, et al.:Quantification of regional myocardial perfusion with generator-produced 62Cu-PTSM and positron emission tomography.Circulation 1993,87:173–183.

    PubMed  CAS  Google Scholar 

  28. Of major importance Namdar M, Hany TF, Koepfli P, et al.:Integrated PET/CT for the assessment of coronary artery disease: a feasibility study.J Nucl Med 2005,46:930–935. This paper describes the integration of myocardial perfusion PET and contrast-enhanced CTA on a combined PET/CT scanner.

    PubMed  Google Scholar 

  29. Of importance Koepfli P, Hany TF, Wyss CA, et al.:CT attenuation correction for myocardial perfusion quantification using a PET/CT hybrid scanner.J Nucl Med 2004,45:537–542. This paper validates the use of low-dose CT for the rapid acquisition of attenuation correction data on a combined PET/CT scanner.

    PubMed  Google Scholar 

  30. Schafers KP, Spinks TJ, Camici PG, et al.:Absolute quantification of myocardial blood flow with H215O and 3-dimensional PET: an experimental evaluation.J Nucl Med 2002,43:1031–1040.

    PubMed  Google Scholar 

  31. Ito Y, Katoh C, Noriyasu K, et al.:Estimation of myocardial blood flow and myocardial flow reserve by 99mTc-sestamibi imaging: Comparison with the results of [15O]H2O PET.Eur J Nucl Med Mol Imaging 2003,30:281–287.

    PubMed  CAS  Google Scholar 

  32. Tsukamoto T, Ito Y, Noriyasu K, et al.:Quantitative assessment of regional myocardial flow reserve using Tc-99m-sestamibi imaging-comparison with results of O-15 water PET.Circ J 2005,69:188–193.

    Article  PubMed  Google Scholar 

  33. Iida H, Eberl S:Quantitative assessment of regional myocardial blood flow with thallium-201 and SPECT.J Nucl Cardiol 1998,5:313–331.

    Article  PubMed  CAS  Google Scholar 

  34. Lau CH, Eberl S, Feng D, et al.:Optimized acquisition time and image sampling for dynamic SPECT of Tl-201.IEEE Trans Med Imaging 1998,17:334–343.

    Article  PubMed  CAS  Google Scholar 

  35. Iida H, Eberl S, Saji H.Quantification in SPECT cardiac imaging.J Nucl Med 200344:40–42.

    PubMed  Google Scholar 

  36. Khare HS, DiBella EVR, Kadrmas DJ, et al.:Comparison of static and dynamic cardiac perfusion thallium-201 SPECT.IEEE Trans Nucl Sci 2001,48:774–779.

    Article  CAS  PubMed  Google Scholar 

  37. Smith AM, Gullberg GT, Christian PE.Experimental verification of technetium 99m-labeled teboroxime kinetic parameters in the myocardium with dynamic singlephoton emission computed tomography: reproducibility, correlation to flow, and susceptibility to extravascular contamination.J Nucl Cardiol 1996,3:130–142.

    Article  PubMed  CAS  Google Scholar 

  38. Di Bella EV, Ross SG, Kadrmas DJ, et al.:Compartmental modeling of technetium-99m-labeled teboroxime with dynamic single-photon emission computed tomography: comparison with static thallium-201 in a canine model.Invest Radiol 2001,36:178–185.

    Article  PubMed  Google Scholar 

  39. Chiao PC, Ficaro EP, Dayanikli F, et al.:Compartmental analysis of technetium-99m-teboroxime kinetics employing fast dynamic SPECT at rest and stress.J Nucl Med 1994,35:1265–1273.

    PubMed  CAS  Google Scholar 

  40. Sugihara H, Yonekura Y, Kataoka F, et al.:Estimation of coronary flow reserve with the use of dynamic planar and SPECT images of Tc-99m tetrofosmin.J Nucl Cardiol 2001,8:575–579.

    Article  PubMed  CAS  Google Scholar 

  41. Gullberg GT, Di Bella EVR, Sinusas AJ.Estimation of coronary flow reserve: can SPECT compete with other modalities? J Nucl Cardiol 2001,8:620–625.

    Article  PubMed  CAS  Google Scholar 

  42. Da Silva AJ, Tang HR, Wong KH, et al.:Absolute quantification of regional myocardial uptake of 99mTc-sestamibi with SPECT: experimental validation in a porcine model.J Nucl Med 2001,42:771–779.

    Google Scholar 

  43. Reutter BW, Gullberg GT, Huesman RH:Kinetic parameter estimation from attenuated SPECT projection measurements.IEEE Trans Nucl Sci 1998,45:3007–3013.

    Article  Google Scholar 

  44. Celler A, Farncombe T, Bever C, et al.:Performance of the dynamic single photon emission computed tomography (dSPECT) method for decreasing or increasing activity changes.Phys Med Biol 2000,45:3525–3543.

    Article  PubMed  CAS  Google Scholar 

  45. Of importance Berman D, Nagler M, Dickman D, et al.:D-SPECT: A novel camera for high speed quantitative molecular imaging: initial description and validation [abstract]. InRadiological Society of North America Scientific Assembly and Annual Meeting Program. Oak Brook, IL: Radiological Society of North America; 2005:SSE21–06. This abstract describes a novel SPECT system, optimized for cardiac imaging.

    Google Scholar 

  46. Of importance Chang W, Liang H, Liu J:Design concepts and potential performance of MarC-SPECT-a high-performance cardiac SPECT system.J Nucl Med 2006,47:190P. This abstract describes a novel SPECT system, optimized for cardiac imaging.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Lodge PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lodge, M.A., Bengel, F.M. Methodology for quantifying absolute myocardial perfusion with PET and SPECT. Curr Cardiol Rep 9, 121–128 (2007). https://doi.org/10.1007/BF02938338

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02938338

Keywords

Navigation