Skip to main content
Log in

Purification and partial characterization of α-l-arabinofuranosidase produced byThermomonospora fusca

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Thermomonospora fusca produced a relatively high level of α-l-arabinofuranosidase when growing on oat spelt xylan as the main carbon and energy source. The enzyme exhibited maximum relative activity (0.136 U/g protein) at pH 9.0 with 54 and 55% activity remaining at pH of 4.5 and 11.0, respectively. The apparentKm value for the crude α-l-arabinofuranosidase preparation was 180 µmol/L 4-nitrophenyl α-l-arabinofuranoside; thevlim value was the release of 40 µmol/L 4-nitrophenol per min. Enzyme activity was eluted as a single peak (HPLC gel filtration chromatography) corresponding to molar mass of ≈92 kDa. Native electrophoresis of crude cell lysate confirmed the presence of a single active intracellular α-l-arabinofuranosidase component. SDS-PAGE of this enzyme, developed as zymogram, did not demonstrate any activity; denaturing gel was stained and a protein band of relative molar mass of 46 kDa was revealed. Isoelectric focusing of a purified α-l-arabinofuranosidase yielded a single protein band for the corresponding activity zone with pI 7.9. The enzyme was purified approximately 21-fold the mean overall yield was about 16%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IEF:

isoelectric focusing

NPA:

4-nitrophenyl α-l-arabinofuranoside

PAGE:

polyacrylamide gel electrophoresis

SDS:

sodium dodecyl sulfate

References

  • Bachmann S.L., McCarthy A.J.: Purification and characterization of a thermostable β-xylosidase fromThermomonospora fusca.J.Gen.Microbiol.135, 293–299 (1989).

    CAS  Google Scholar 

  • Bachmann S.L., McCarthy A.J.: Purification and co-operative activity of enzymes constituting the xylan-degrading system ofThermomonospora fusca.Appl.Environ.Microbiol.57, 2121–2130 (1991).

    PubMed  CAS  Google Scholar 

  • Bèguin P.: Molecular biology of cellulose degradation.Ann.Rev.Microbiol.44, 219–248 (1990).

    Article  Google Scholar 

  • Bèguin P., Aubert J.P.: The biological degradation of cellulose.FEMS Microbiol.Rev.13, 25–58 (1994).

    Article  PubMed  Google Scholar 

  • Betts W.B., Dart R.K., Ball A.S., Pedlar S.L.: Biosynthesis and structure of lignocellulose, pp. 139–156 in W.B. Betts (Ed.):Biodegradation Natural and Synthetic Materials. Springer-Verlag, London 1992.

    Google Scholar 

  • Coughlan M.P., Hazlewood G.P.: β-1,4-d-Xylan-degrading enzyme systems: biochemistry, molecular biology and applications.Biotechnol.Appl.Biochem.17, 259–289 (1993).

    PubMed  CAS  Google Scholar 

  • Gilead S., Shoham Y.: Purification and characterization of α-l-arabinofuranosidase fromBacilius stearothermophilus T-6.Appl.Environ.Microbiol.61, 170–174 (1995).

    PubMed  CAS  Google Scholar 

  • Goodfellow M., Williams S.T.: Ecology of actinomycetes.Ann.Rev.Microbiol.37, 189–216 (1983).

    Article  CAS  Google Scholar 

  • Greve L.C., Labavitch J.M., Hungate R.E.: α-l-Arabinofuranosidase fromRuminococcus albus 8: purification and possible role in hydrolysis of alfalfa cell wall.Appl.Environ.Microbiol.47, 1135–1140 (1984).

    PubMed  CAS  Google Scholar 

  • Iqbal M., Mercer D.K., Miller P.G.G., McCarthy A.J.: Thermostable extra-cellular peroxidases fromStreptomyces thermoviolaceus.Microbiology140, 1457–1465 (1994).

    Article  CAS  Google Scholar 

  • Joseleau J.P., Comtat J., Ruel K.: Chemical structure of xylans and their interaction in the plant cell walls, pp. 1–15 in J. Visser, G. Beldman, M.A. Kusters van Somerenand, A.G.J. Voragen (Eds):Xylans and Xylanases. Progress in Biotechnology, Vol. 7. Elsevier Applied Science, Amsterdam (The Netherlands) 1992

    Google Scholar 

  • Kaji A., Sato M., Tsutsui Y.: An α-l-arabinofuranosidase produced by the wild-typeStreptomyces sp. 17-1.Agr.Biol.Chem.45, 925–931 (1981).

    CAS  Google Scholar 

  • Laemmli U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature227, 680–685 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Lee S.F., Forsberg C.W.: Purification and characterization of an α-l-arabinofuranosidase fromClostridium acetobutylicum ATCC 824.Can.J.Microbiol.33, 1011–1016 (1987).

    Article  CAS  Google Scholar 

  • Matsuo N., Kaneko S., Kuno A., Kobayashi H., Kusakabe I.: Purification, characterization end gene cloning of two α-l-arabinofuranosidase fromStreptomyces chartreusis GS901.Biochem.J.346, 9–15 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Morales P., Madarro A., Flors A., Sendra J.M., Pérez-González J.A.: Purification and characterization of a xylanase and an arabinofuranosidase fromBacillus polymyxa.Enzyme Microbiol.Technol.17, 424–429 (1995).

    Article  CAS  Google Scholar 

  • Nissen A.M., Anker L., Munk N., Lange N.K.: Xylanases for the pulp and paper industry, pp. 325–337 in J. Visser, G. Beldman, M.A. Kusters van Somerenand, A.G.J. Voragen (Eds):Xylans and Xylanases. Progress in Biotechnology, Vol. 7. Elsevier Applied Science, Amsterdam (The Netherlands) 1992.

    Google Scholar 

  • Puls J., Poutanen K.: Mechanism of enzymatic hydrolysis of hemicelluloses (xylans) and procedures for determination of the enzyme activities involved, pp. 151–165 in M.P. Coughlan (Ed.),Enzyme Systems for Lignocellulose Degradation. Elsevier Applied Science, London 1989.

    Google Scholar 

  • Ramachandra M., Crawford D.L., Pometto A.L.: Extracellular enzyme activities during lignocellulose degradation byStreptomyces sp.: a comparative study of wild-type and genetically manipulated strains.Appl.Environ.Microbiol.53, 2754–2760 (1987).

    PubMed  CAS  Google Scholar 

  • Reid I.D., Paice M.G.: Effects of manganese peroxidase on residual lignin of softwood kraft pulp.Appl.Environ.Microbiol.64, 2273–2274 (1998).

    PubMed  CAS  Google Scholar 

  • Rob A., Ball A.S., Tuncer M., Wilson M.T.: Thermostable novel non-hem extracellular glycosylated peroxidase fromThermomonospora fusca BD25.Biotechnol.Appl.Biochem.24, 161–170 (1996).

    CAS  Google Scholar 

  • Schwarz W.H., Bronnenmeier K., Krause B., Lottspeich F., Staudenbauer W.L.: Debranching of arabinoxylan: properties of the thermoactive recombinant α-l-arabinofuranosidase fromClostridium stercorarium (arfB).Appl.Microbiol.Biotechnol.43, 856–860 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Senior D.J., Hamilton J., Bernier R.L. Jr.: Use ofStreptomyces lividans xylanase for bleaching of kraft pulps, pp. 555–558 in J. Visser, G. Beldman, M.A. Kusters van Somerenand, A.G.J. Voragen (Eds):Xylans and Xylanases. Progress in Biotechnology, Vol. 7. Elsevier Applied Science, Amsterdam (The Netherlands) 1992.

    Google Scholar 

  • Tagawa K., Kaji A.: α-l-Arabinofuranosidase fromAspergillus niger.Meth.Enzymol.160, 707–712 (1988).

    Article  CAS  Google Scholar 

  • Tajana E., Fiechter A., Zimmermann W.: Purification and characterization of two α-l-arabinofuranosidases fromStreptomyces diastaticus.Appl.Environ.Microbiol.58, 1447–1450 (1992).

    PubMed  CAS  Google Scholar 

  • Thomson J.A.: Molecular biology of xylan degradation.FEMS Microbiol.Rev.104, 65–82 (1993).

    Article  CAS  Google Scholar 

  • Trigo C., Ball A.S.: Production of extracellular enzymes during the solubilization of straw byThermomonospora fasca BD25.Appl.Microbiol.Biotechnol.41, 366–372 (1994).

    Article  CAS  Google Scholar 

  • Tuncer M.: Characterization of β-xylosidase and α-l-arbinofuranosidase activities fromThermomonospora fusca BD25.Turk.J.Biol.24, 753–767 (2000).

    CAS  Google Scholar 

  • Tuncer M., Rob A., Ball A.S., Wilson M.T.: Production of extracellular lignocellulose degrading enzymes byThermomonospora fusca BD25.Biochem.Soc.Trans.24, S378 (1996).

    Google Scholar 

  • Tuncer M., Rob A., Ball A.S., Eady R.R., Henderson N., Wilson M.T.: Optimization of production of extracellular non-hem peroxidases byThermomonospora fusca BD25 in aerobic bio-reactor conditions.Biochem.Soc.Trans.25, S65 (1997).

    Google Scholar 

  • Tuncer M., Rob A., Ball A.S., Wilson M.T.: Optimization of extracellular lignocellulolytic enzyme production by a thermophilic actinomyceteThermomonospora fusca BD25.Enzyme Microbiol.Technol.25, 38–47 (1999).

    Article  CAS  Google Scholar 

  • Utt E.A., Eddy C.K., Keshav K.F., Ingram L.O.: Sequencing and expression of theButyrivibrio fibrisolvens xylB gene encoding a novel bifunctional protein with β-d-xylosidase and α-l-arabinofuranosidase activities.Appl.Environ.Microbiol.57, 1227–1234 (1991).

    PubMed  CAS  Google Scholar 

  • Viikari L., Kantelinen A., Sundquist J., Linko M.: Xylanases in bleaching: from an idea to the industry.FEMS Microbiol.Rev.13, 335–350 (1994).

    Article  CAS  Google Scholar 

  • Wood T.M., McCrae S.I.: Arabinoxylan-degrading enzyme system of the fungusAspergillus awamori: purification and properties of an α-l-arabinofuranosidase.Appl.Microbiol.Biotechnol.45, 538–545 (1996).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tuncer.

Additional information

The work was carried out in the frame of a postgraduate studentship provided for the first author byUniversity of Essex (UK); the first author also acknowledges the scholarship provided byMersin University (Turkey).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuncer, M., Ball, A.S. Purification and partial characterization of α-l-arabinofuranosidase produced byThermomonospora fusca . Folia Microbiol 48, 168–172 (2003). https://doi.org/10.1007/BF02930950

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02930950

Keywords

Navigation