Skip to main content
Log in

Chromium and chronic ascorbic acid depletion effects on tissue ascorbate, manganese, and14C retention from14C-ascorbate in guinea pigs

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chromium (Cr) potentiates the effects of insulin and a role for insulin in ascorbic acid transport has been reported. Therefore, the effects of Cr and ascorbate depletion on tissue ascorbic acid and14C distribution and excretion after a14C ascorbate dose were investigated in guinea pigs. As utilization of dietary Cr is affected by interaction with other minerals, tissue manganese (Mn), zinc (Zn), copper (Cu), and iron (Fe) were examined. For 20 wk, 40 weanling animals were fed either a Cr-deficient (<0.06 μg Cr/g diet, −Cr) or a Cr-adequate (2 μg Cr from CrCl3/g diet, +Cr) casein-based diet and were given 1 mg ascorbate/d (−C) or 10 mg ascorbate/d (+C) for 20 wk. Animals fed the Cr-depleted diet had decreased weight at 20 wk (p<0.01). Six hours before necropsy, animals were dosed by micropipette with 1.8 μCi ofl-[carboxyl-14C] ascorbic acid and placed in metabolic cages. Ascorbate supplementation increased Fe concentrations in most analyzed tissues, hepatic14C, tissue ascorbate and Mn concentration in the adrenal and testes, but decreased the concentrations of Cu in the kidney and Mn in the spleen. Liver Mn concentration was higher and kidney Mn concentration was lower in +Cr animals. Interactions between Cr and ascorbic acid affected Mn concentrations in bone and brain. These results indicate that ascorbate and Cr may affect Mn distribution. Chromium supplementation decreased plasma cortisol, brain14C and the amount of14C expired as carbon dioxide. These findings suggest that dietary Cr may affect ascorbic acid metabolism and the metabolic response to stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Mann and P. Newton,Ann. NY Acad. Sci. 258, 243–252 (1975).

    Article  PubMed  CAS  Google Scholar 

  2. J. C. Kapeghian and A. J. Verlangieri,Life Sci. 34, 577–584 (1984).

    Article  PubMed  CAS  Google Scholar 

  3. E. J. Zebrowski, P. K. Bhatnager, and J. R. Brunka.J. Dental Res. 55, B145–147 (1976).

    Google Scholar 

  4. E. Ginter, B. Zdichynec, O. Holzerova, E. Ticha, R. Kobza, M. Koziakova, O. Cerna, L. Ozdin, F. Hruba, V. Novakova, E. Sasko, and M. Gaher,Int. J. Vit. Nutr. Res. 48, 368–373 (1978).

    CAS  Google Scholar 

  5. W. Mertz,Proceedings of the Seventh International Congress of Nutrition, Physiology and Biochemistry of Food Components, vol. 5, J. Kuhnau, ed., Permagon Press, London, pp. 689–692 (1967).

    Google Scholar 

  6. C. T. Gurson and G. Saner,Am. J. Clin. Nutr. 26, 988–991 (1973).

    PubMed  CAS  Google Scholar 

  7. H. A. Schroeder,J. Nutr. 88, 439–445 (1966).

    PubMed  CAS  Google Scholar 

  8. A. J. Speek, J. T. N. M. Thissen, and J. Schrijver,J. Clin. Chem. Clin. Biochem. 24, 465–470 (1986).

    PubMed  CAS  Google Scholar 

  9. S. B. Heymsfield, C. Arteaga, C. McManus, J. Smith, and S. Moffitt,Am. J. Clin. Nutr. 37, 478–494 (1983).

    PubMed  CAS  Google Scholar 

  10. H. Stolley, E. Zeh, and W. Droese,Eur. J. Pediatr. 125, 103–115 (1977).

    Article  PubMed  CAS  Google Scholar 

  11. C. J. Bates,Int. J. Vit. Nutr. Res. 49, 152–159 (1979).

    CAS  Google Scholar 

  12. M. J. Barnes, B. J. Constable, and E. Kodicek,Biochim. Biophys. Acta 184, 358–365 (1969).

    PubMed  CAS  Google Scholar 

  13. K. I. Kivirikko and O. Laitinen,Acta Physiol. Scand. 64, 356–360 (1965).

    Article  PubMed  CAS  Google Scholar 

  14. V. A. Wilbur, and B. L. Walker,Nutr. Rep. Int. 16, 403–411 (1977).

    CAS  Google Scholar 

  15. C. J. Hahn and G. W. Evans,Am. J. Physiol. 228, 1020–1023 (1975).

    PubMed  CAS  Google Scholar 

  16. L. L. Hopkins, Jr. and K. Schwarz,Biochim. Biophys. Acta 90, 484–491 (1964).

    PubMed  CAS  Google Scholar 

  17. L. S. Hurley and C. L. Keen,Trace Elements in Human and Animal Nutrition, W. Mertz, ed., Academic Press, San Diego, CA, pp. 185–223 (1987).

    Google Scholar 

  18. G. J. Everson and R. E. Shrader,J. Nutr. 94, 89–94 (1968).

    PubMed  CAS  Google Scholar 

  19. I. Bergman and R. Loxley,Clin. Chim. Acta 27, 347–349 (1970).

    Article  PubMed  CAS  Google Scholar 

  20. E. L. McGown, M. G. Rusnak, C. M. Lewis, and J. A. Tillotson,Anal. Biochem. 119, 55–61 (1982).

    Article  PubMed  CAS  Google Scholar 

  21. A. D. Hill, K. Y. Patterson, C. Veillon, and E. R. Morris,Anal. Chem. 58, 2340–2342. (1986).

    Article  CAS  Google Scholar 

  22. J. J. Burns, P. G. Dayton, and S. Schulenberg,J. Biol. Chem. 218, 15–21 (1956).

    PubMed  CAS  Google Scholar 

  23. W. Mertz,Physiol. Rev. 49, 163–239 (1969).

    PubMed  CAS  Google Scholar 

  24. R. A. Anderson,Trace Elements in Human and Animal Nutrition, W. Mertz, ed., Academic Press, NY, pp. 225–244 (1987).

    Google Scholar 

  25. W. Mertz, E. E. Roginski, and K. Schwarz,J. Biol. Chem. 236, 318–322 (1961).

    PubMed  CAS  Google Scholar 

  26. D. E. Kipp and J. M. Rivers,J. Nutr. 114, 1386–1395 (1984).

    PubMed  CAS  Google Scholar 

  27. W. Mertz and E. E. Roginski,J. Nutr. 97, 531–536 (1969).

    PubMed  CAS  Google Scholar 

  28. F. H. Nielsen,Nutr. Rev. 46, 337–341 (1988).

    Article  PubMed  CAS  Google Scholar 

  29. R. A. Anderson, M. M. Polansky, N. A. Bryden, E. E. Roginski, K. Y. Patterson, and D. C. Reamer,Diabetes 31, 212–216 (1982).

    Article  PubMed  CAS  Google Scholar 

  30. J. S. Borel and R. A. Anderson,Biochemistry of the Essential Ultratrace Elements, E. Frieden, ed., Plenum, NY, pp. 175–199 (1984).

    Google Scholar 

  31. J. R. Penney and S. S. Zilva,Biochem. J. 40, 695–706 (1946).

    PubMed  CAS  Google Scholar 

  32. D. E. Kipp and J. M. Rivers,J. Nutr. 117, 1570–1575 (1987).

    PubMed  CAS  Google Scholar 

  33. K. Nakano and S. Suzuki,J. Nutr. 114, 1602–1608 (1984).

    PubMed  CAS  Google Scholar 

  34. R. E. Hughes, P. R. Jones, R. S. Williams, and P. F. Wright,Life Sci. 10, 661–668 (1971).

    Article  CAS  Google Scholar 

  35. J. J. Burns, H. B. Burch, and C. G. King,J. Biol. Chem. 191, 501–514 (1951).

    PubMed  CAS  Google Scholar 

  36. M. C. Nath, J. S. Dheer, N. Nath,Indian J. Exp. Biol. 6, 148–149 (1968).

    PubMed  CAS  Google Scholar 

  37. D. B. Milne and S. T. Omaye,Int. J. Vit. Nutr. Res. 50, 301–308 (1980).

    CAS  Google Scholar 

  38. E. B. Finley and F. L. Cerklewski,Am. J. Clin. Nutr. 37, 553–556 (1983).

    PubMed  CAS  Google Scholar 

  39. C. H. Smith and W. R. Bidlack,J. Nutr. 110, 1398–1408 (1980).

    PubMed  CAS  Google Scholar 

  40. A. K. Majumder, B. K. Nandi, N. Subramanian, and I. B. Chatterjee,J. Nutr. 105, 240–244 (1975).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seaborn, C.D., Cheng, N., Adeleye, B. et al. Chromium and chronic ascorbic acid depletion effects on tissue ascorbate, manganese, and14C retention from14C-ascorbate in guinea pigs. Biol Trace Elem Res 41, 279–294 (1994). https://doi.org/10.1007/BF02917429

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02917429

Index Entries

Navigation