Skip to main content
Log in

Increasing cellulose production and transgenic plant growth in forest tree species

  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Cellulose is one of many important polymers in plants. Cellulose is made of repeat units of the monomer glucose. Cellulose is a major industrial biopolymer in the forest products, textile, and chemical industries. It also forms a large portion of the biomass useful in the generation of energy. Moreover, cellulose-based biomass is a renewable energy source that can be used for the generation of ethanol as a fuel. Cellulose is synthesized by a variety of living organisms such as plants and algae. It is the major component of plant cell walls with secondary cell walls having a much higher content of cellulose. The relationship between cellulose and lignin biosynthesis is complicated, but it is confirmed that inhibition of lignin biosynthesis in transgenic trees will increase cellulose biosynthesis and plant growth. Cellulose accumulation may be increased by down-regulating 4-coumarate:coenzyme A ligase (4CL, EC 6.2.1.12) as shown in transgenic aspen. There is no similar reports on down-regulating 4CL in transgenic conifers. Based on our establishedAgrobacterium tumefaciens-mediated transformation system in loblolly pine, we are able to produce antisense 4-CL transgenic loblolly pine which is predicted to have increasing cellulose accumulation. The overall objective of this project is to genetically engineer forest tree species such as loblolly pine with reduced amount of lignin and increased cellulose content. The research strategy includes: (1) isolate the 4-coumarate:coenzyme A ligase gene from loblolly pine seedlings by reverse transcription-polymerase chain reaction (RT-PCR) and Rapid Amplification of cDNA Ends-Polymerase Chain Reaction (RACE-PCR) techniques from the cDNA library; (2) construct binary expression vectors with antisense 4CL coding sequences and introduce antisense constructs of the 4-coumarate:coenzyme A ligase gene cloned from loblolly pine into the loblolly pine to down regulate the 4-coumarate:coenzyme A ligase gene expression; (3) study the effect of the antisense transgene expression on lignin content, cellulose accumulation, and loblolly pine biomass; and (4) select fast growth and high cellulose accumulation transgenic loblolly pine lines for future commercial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, J.C., Barakate, A., Pincon G., Legrand, M., Lapierre, C.,et al. 2002. Simultaneous suppression of multiple genes by single transgenes. Down-regulation of three unrelated lignin biosynthetic genes in tobacco [J]. Plant Physiol.,128: 844–53.

    Article  PubMed  CAS  Google Scholar 

  • Allina, S.M., Pri-Hadash, A., Theilmann, D.A., Ellis, B.E., Douglas, C.J. 1998. 4-Coumarate: coenzymeAligase in hybrid poplar [J]. Plant Physiol.,116: 743–54.

    Article  PubMed  CAS  Google Scholar 

  • Amor, Y., Haigler, C.H., Johnson, S., Wainscott, M., Delmer, D.P. 1995. Amembraneassociated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants [J]. Proc. Natl. Acad. Sci. USA,92: 9353–57.

    Article  PubMed  CAS  Google Scholar 

  • Anterola, A.M., Jeon, J-H., Davin, L.B., Lewis, N.G. 2002. Transcriptional control of monolignol biosynthesis inPinus taeda. Factors affecting monolignol ratios and carbon allocation in phenylpropanoidmetabolism. J. Biol. Chem.,277: 18272–80.

    Article  PubMed  CAS  Google Scholar 

  • Arioli, T., Peng, L.C., Betzner, A.S., Burn, J., Wittke, W.,et al. 1998. Molecular analysis of cellulose biosynthesis inArabidopsis[J]. Science,279: 717–20.

    Article  PubMed  CAS  Google Scholar 

  • Atanassova, R., Favet, N., Martz, F., Chabbert, B., Tollier, M.T.,et al. 1995. Altered lignin composition in transgenic tobacco expressingO-methyltransferase sequences in sense and antisense orientation [J]. Plant J.,8: 465–77.

    Article  CAS  Google Scholar 

  • Baucher, M., Bernard-Vailh'e, M.A., Chabbert, B., Besle, J-M., Opsome, C.,et al. 1999. Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the impact on lignin composition and digestibility [J]. Plant Mol. Biol.,39: 437–47.

    Article  PubMed  CAS  Google Scholar 

  • Blount, J.W., Masoud, S., Sumner, L.W., Huhman, D., Dixon, R.A. 2002. Overexpression of cinnamate 4-hydroxylase leads to increased accumulation of acetosyringone in elicited tobacco cellsuspension cultures [J]. Planta,214: 902–10.

    Article  PubMed  CAS  Google Scholar 

  • Boerjan, W., Ralph, J., Baucher, M. 2003. Lignin biosynthesis [J]. Annu Rev Plant Biol.,54: 519–46.

    Article  PubMed  CAS  Google Scholar 

  • Bolwell, G.P., Gramer, C.L., Lamb, C.J., Schuch, W., Dixon, R.A. 1986. L-Phenylalanine ammonia-lyase fromPhaseolus vulgaris. Modulation of the levels of active enzyme bytrans-cinnamic acid [J]. Planta,169: 97–107.

    Article  CAS  Google Scholar 

  • Brown, R.M.Jr. 1996. The biosynthesis of cellulose [J]. J. Macromol. Sci. Pure Appl. Chem.,A33(10): 1345–73.

    Google Scholar 

  • Brown, R.M. Jr, Montezinos, D. 1976. Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane [J]. Proc. Natl. Acad. Sci. USA,73: 143–147.

    Article  PubMed  CAS  Google Scholar 

  • Brown, R.M. Jr, Saxena, I.M., Kudlicka, K. 1997. Cellulose biosynthesis in higher plants [J]. Trends Plant Sci.,1: 149–156.

    Google Scholar 

  • Brummell, D.A., Catala, C., Lashbrook, C.C., Bennett, A.B. 1997. A membrane-anchored E-type endo-1,4-beta-glucanase is localized on Golgi and plasma membranes of higher plants [J]. Proc. Natl. Acad. Sci. USA,94: 4794–4799.

    Article  PubMed  CAS  Google Scholar 

  • Carpita, N.C. 1996. Structure and biogenesis of the cell walls of grasses[J]. Annu. Rev. Plant Physiol. Plant Mol. Biol.,47: 445–476.

    Article  PubMed  CAS  Google Scholar 

  • Carpita, N., Vergara, C. 1998. A recipe for cellulose [J]. Science,279: 672–673.

    Article  PubMed  CAS  Google Scholar 

  • Chabannes, M., Barakate, A., Lapierre, C., Marita, J.M., Ralph, J.,et al. 2001a. Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous downregulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants [J]. Plant J.,28: 257–70.

    Article  PubMed  CAS  Google Scholar 

  • Chabannes, M., Ruel, K., Yoshinaga, A., Chabbert, B., Jauneau, A.,et al. 2001b.In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels [J]. Plant J.,28: 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Chanzy, H., Henrissat, B. 1985. Unidirectional degradation of Valonia cellulose microcrystals subjected to cellulase action [J]. FEBS Lett.184: 285–288.

    Article  CAS  Google Scholar 

  • Chapple C. 1998. Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases.Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 311–43.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C., Meyermans, H., Burggraeve, B., De Rycke, R.M., Inoue, K.,et al. 2000. Cell-specific and conditional expression of caffeoyl-CoAO-methyltransferase in Poplar [J]. Plant Physiol.,123: 853–867.

    Article  PubMed  CAS  Google Scholar 

  • Chen, F., Yasuda, S., Fukushima, K. 1999. Evidence for a novel biosynthetic pathway that regulates the ratio of syringyl to guaiacyl residues in lignin in the differentiating xylem ofMagnolia kobus DC [J]. Planta,207: 597–603.

    Article  CAS  Google Scholar 

  • Christensen, J.H., Baucher, M., O'Connell, A.P., Van Montagu, M., Boerjan, W. 2000. Control of lignin biosynthesis [C]. In: SM Jain, SC Minocha (eds),Molecular Biology of Woody Plants, Volume1, For. Sci., 64: 227–267. Dordrecht: Kluwer. 520 pp.

    Google Scholar 

  • Christensen, J.H., Overmey, S., Rohde, A., Ardiles Diaz, W., Bauw, G.,et al. 2001. The syringaldazine-oxidizing peroxidase PXP 3–4 from poplar xylem: cDNA isolation, characterization and expression [J]. Plant Mol. Biol.,47: 581–93.

    Article  PubMed  CAS  Google Scholar 

  • Delmer, D.P. 1999 Cellulose Biosynthesis: Exciting Times for A Difficult Field of Study [J]. Annu. Rev. Plant Physiol. Plant Mol. Biol.,50: 245–276.

    Article  PubMed  CAS  Google Scholar 

  • Delmer, D.P. 1987. Cellulose biosynthesis [J]. Annu. Rev. Plant Physiol.,38: 259–290.

    Article  CAS  Google Scholar 

  • Delmer, D.P., Amor, Y. 1995. Cellulose biosynthesis [J]. Plant Cell,7: 987–1000.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R.A., Chen, F., Guo, D., Parvathi, K. 2001. The biosynthesis of monolignols: a “metabolic grid,” or independant pathways to guaiacyl and syringyl units? [J] Phytochemistry,57: 1069–1084.

    Article  PubMed  CAS  Google Scholar 

  • Doblin, M.S., Kurek, I., Jacob-Wilk, D., Delmer, D.P. 2002. Cellulose Biosynthesis in Plants: from Genes to Rosettes [J]. Plant Cell Physiol.,43(12): 1407–1420.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson, L.A. 2001. Lignification and lignin topochemistry—an ultrastructural view [J]. Phytochemistry,57: 859–873.

    Article  PubMed  CAS  Google Scholar 

  • Ehlting, J., B'uttner, D., Wang, Q., Douglas, C.J., Somssich, I.E., Kombrink, E. 1999. Three 4-coumarate:coenzyme A ligases inArabidopsis thaliana represent two evolutionarily divergent classes in angiosperms [J]. Plant J.,19: 9–20.

    Article  PubMed  CAS  Google Scholar 

  • Franke R, Hemm MR, Denault JW, Ruegger MO, Humphreys JM, Chapple C. 2002. Changes in secondary metabolism and deposition of an unusual lignin in theref8 mutant ofArabidopsis [J]. Plant J.,30: 47–59.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, K.H., Blackwell, J. 1974. The structure of native cellulose [J]. Biopolymers,13: 1975–2001.

    Article  CAS  Google Scholar 

  • Grabber, J.H., Ralph, J., Hatfield, R.D., Quideau, S. 1997.p-hydroxyphenyl, guaiacyl, and syringyl lignins have similar inhibitory effects on wall degradability [J]. J. Agric. Food Chem.,45: 2530–2532.

    Article  CAS  Google Scholar 

  • Guo, D., Chen, F., Inoue, K., Blount, J.W., Dixon, R.A. 2001. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin [J]. Plant Cell,13: 73–88.

    Article  PubMed  CAS  Google Scholar 

  • Halpin, C., Holt, K., Chojecki, J., Oliver, D., Chabbert, B.,et al. 1998.Brown-midrib maize (bml)—a mutation affecting the cinnamyl alcohol dehydrogenase gene [J]. Plant J.,14: 545–553.

    Article  PubMed  CAS  Google Scholar 

  • Hibino, T., Takabe, K., Kawazu, T., Shibata, D., Higuchi, T. 1995. Increase of cinnamaldehyde groups in lignin of transgenic tobacco plants carrying an antisense gene for cinnamyl alcohol dehydrogenase [J]. Biosci. Biotech. Biochem.,59: 929–931.

    Article  CAS  Google Scholar 

  • Howles, P.A., Sewalt, V.J.H., Paiva, N.L., Elkind, Y., Bate, N.J.,et al. 1996. Overexpression of L-phenylalanine ammonialyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis [J]. Plant Physiol.,112: 1617–1624.

    PubMed  CAS  Google Scholar 

  • Hu, W-J., Harding, S.A., Lung, J., Popko, J.L., Ralph, J.,et al. 1999. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees [J]. Nat. Biotechnol.,17: 808–812.

    Article  PubMed  CAS  Google Scholar 

  • Humphreys, J.M., Hemm, M.R., Chapple, C. 1999. New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase [J]. Proc. Natl. Acad. Sci. USA,96: 10045–10050.

    Article  PubMed  CAS  Google Scholar 

  • Itoh T. 1990. Cellulose synthesizing complexes in some giant marine algae [J]. J. Cell Sci.,95: 309–319.

    CAS  Google Scholar 

  • Jones L, Ennos AR, Turner SR. 2001. Cloning and characterization ofirregular xylem4 (irx4): a severely lignin deficient mutant ofArabidopsis [J]. Plant J.,26: 205–216.

    Article  PubMed  CAS  Google Scholar 

  • Kajita, S., Hishiyama, S., Tomimura, Y., Katayama, Y., Omori, S. 1997. Structural characterization of modified lignin in transgenic tobacco plants in which the activity of 4-coumarate: coenzymeAligase is depressed [J]. Plant Physiol.,114: 871–879.

    PubMed  CAS  Google Scholar 

  • Kajita, S., Katayama, Y., Omori, S. 1996. Alterations in the biosynthesis of lignin in transgenic plants with chimeric genes for 4-coumarate:coenzyme A ligase [J]. Plant Cell Physiol.,37: 957–965.

    PubMed  CAS  Google Scholar 

  • Kawagoe, Y., Delmer, D.P. 1997. Pathways and genes involved in cellulose biosynthesis [J]. Genet. Eng.,19: 63–87.

    CAS  Google Scholar 

  • Keller, B., Templeton, M.D., Lamb, C.J. 1989. Specific localization of a plant cell wall glycine-rich protein in protoxylem cells of the vascular system [J]. Proc. Natl. Acad. Sci. USA,86: 1529–1533.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D., Meyer, K., Chapple, C., Douglas, C.J. 1997. Antisense suppression of 4-coumarate: coenzyme A ligase activity inArabidopsis leads to altered lignin subunit composition [J]. Plant Cell,9: 1985–1998.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., Cheng, X.F., Leshkevich, J., Umezawa, T., Harding, S.A., Chiang, V.L., 2001. The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase [J]. Plant Cell,13: 1567–1585.

    Article  PubMed  CAS  Google Scholar 

  • Lin, F.C., Brown, R.M. Jr. 1989. Purification of cellulose synthase from Acetobacter xylinum [C]. In: C. Scheurch (ed.), Cellulose and Wood—Chemistry and Technology. New York: Wiley, pp. 473–492

    Google Scholar 

  • MacKay, J.J., O'Malley, D.M., Presnell, T., Booker, F.L., Campbell, M.M.,et al. 1997. Inheritance, gene expression, and lignin characterization in a mutant pine defi-cient in cinnamyl alcohol dehydrogenase [J]. Proc. Natl. Acad. Sci. USA,94: 8255–8260.

    Article  PubMed  CAS  Google Scholar 

  • Marita, J.M., Ralph, J., Hatfield, R.D., Chapple, C. 1999. NMR characterization of lignins inArabidopsis altered in the activity of ferulate 5-hydroxylase [J]. Proc. Natl. Acad. Sci. USA,96: 12328–12332.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, K., Shirley, A.M., Cusumano, J.C., Bell-Lelong, D.A., Chapple, C. 1998. Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase inArabidopsis[J]. Proc. Natl. Acad. Sci. USA,95: 6619–6623.

    Article  PubMed  CAS  Google Scholar 

  • Neish, A.C. 1968. Monomeric intermediates in the biosynthesis of lignin [C]. In: K. Freudenberg and A.C. Neish (eds), Constitution and Biosynthesis of Lignin, New York: Springer-Verlag, pp. 3–43.

    Google Scholar 

  • Osakabe, K., Tsao, C.C., Li, L., Popko, J.L., Umezawa, T.,et al. 1999. Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms [J]. Proc. Natl. Acad. Sci. USA,96: 8955–8960.

    Article  PubMed  CAS  Google Scholar 

  • Parvathi, K., Chen, F., Guo, D., Blount, J.W., Dixon, R.A. 2001. Substrate preferences ofO-methyltransferases in alfalfa suggest new pathways for 3-O-methylation of monolignols [J]. Plant J.,25: 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Pear, J., Kawagoe, Y., Schreckengost, W., Delmer, D.P., Stalker, D. 1996. Higher plants contain homologs of the bacterial CelA genes encoding the catalytic subunit of the cellulose synthase [J]. Proc. Natl. Acad. Sci. USA93: 12637–12642.

    Article  PubMed  CAS  Google Scholar 

  • Ralph, J., MacKay, J.J., Hatfield, R.D., O'Malley, D.M., Whetten, R.W., Sederoff, R.R. 1997. Abnormal lignin in a loblolly pine mutant [J]. Science,277: 235–39.

    Article  PubMed  CAS  Google Scholar 

  • Ranocha, P., McDougall, G., Hawkins, S., Sterjiades, R., Borderies, G.,et al. 1999. Biochemical characterization, molecular cloning and expression of laccases—a divergent gene family—in poplar [J]. Eur. J. Biochem.,259: 485–95.

    Article  PubMed  CAS  Google Scholar 

  • Samuels, A.L., Rensing, K., Douglas, C.J., Mansfield, S., Dharmawardhana, P., Ellis, B. 2002. Cellular machinery of wood production: differentiation of secondary xylem inPinus contorta var.latifolia [J]. Planta,216: 72–82.

    Article  PubMed  CAS  Google Scholar 

  • Sarkanen, K.V., Ludwig, C.H., ed. 1971. Lignins: Occurrence, Formation, Structure, and Reactions [M]. New York Wiley-Intersci. 916 pp.

    Google Scholar 

  • Sederoff, R.R., MacKay, J.J., Ralph, J., Hat-field, R.D. 1999. Unexpected variation in lignin [J]. Curr. Opin. Plant Biol.,2: 145–52.

    Article  PubMed  CAS  Google Scholar 

  • Sewalt, V.J.H., Ni W, Blount, J.W., Jung, H.G., Masoud, S.A.,et al. 1997. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonialyase or cinnamate 4-hydroxylase [J]. Plant Physiol.,115: 41–50.

    PubMed  CAS  Google Scholar 

  • Tang, W., Sedoroff, R., Whetten, R. 2001. Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed withAgrobacterium tumefaciens [J]. Planta.,213: 981–989.

    PubMed  CAS  Google Scholar 

  • Thelen, M.T., Delmer, D.P. 1986. Gelelectrophoretic separation, detection, and characterization of plant and bacterial UDP-glucose glucosyltransferases [J]. Plant Physiol.,81: 913–18.

    Article  PubMed  CAS  Google Scholar 

  • VanderHart, D.L., Atalla, R.H. 1986. In Cellulose: Structure, Modification and Hydrolysis, ed. RA Young, RM Rowell, pp. 88–118. New York: Wiley-Intersci.

    Google Scholar 

  • Voo, K.S., Whetten, R.W., O'Malley, D.M., Sederoff, R.R. 1995. 4-Coumarate:Coenzyme A ligase from loblolly pine xylem: Isolation, Characterization, and Complementary DNA Cloning [J]. Plant Physiol.,108: 85–97.

    Article  PubMed  CAS  Google Scholar 

  • Whetten, R.W., MacKay, J.J., Sederoff, R.R. 1998. Recent advances in understanding lignin biosynthesis [J]. Annu. Rev. Plant Physiol. Plant Mol. Biol.,49: 585–609.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, R., Morrison, W.H. III, Himmelsbach, D.S., Poole, F.L. II, Ye, Z-H. 2000. Essential role of caffeoyl coenzyme AOmethyltransferase in lignin biosynthesis in woody poplar plants [J]. Plant Physiol.,124: 563–577.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, R., Morrison, W.H. III, Negrel, J., Ye, Z-H. 1998. Dual methylation pathways in lignin biosynthesis [J]. Plant Cell.,10: 2033–2046.

    Article  PubMed  CAS  Google Scholar 

  • Zubieta, C., Kota, P., Ferrer, J-L., Dixon, R.A., Noel, J.P. 2002. Structural basis for the modulation of lignin monomer methylation by caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase [J]. Plant Cell,14: 1265–1277.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tang Wei.

Additional information

Biography: TANG Wei (1964-), male, Ph. Doctor, Assistant Professor, Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858-4353, USA.

Responsible: editor: Chai Ruihai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, T., Nelson, A. & Johnson, E. Increasing cellulose production and transgenic plant growth in forest tree species. Journal of Forestry Research 16, 67–72 (2005). https://doi.org/10.1007/BF02856860

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02856860

Keywords

CLC Number

Document code

Navigation