Skip to main content
Log in

Geochemistry of the rare earth elements in natural terrestrial waters: A review of what is currently known

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

The range of observed chemical compositions of natural terrestrial waters varies greatly especially when compared to the essentially constant global composition of the oceans. The concentrations of the REEs in natural terrestrial waters also exhibit more variation than what was reported in seawater. In terrestrial waters, pH values span the range from acid up to alkaline. In addition, terrestrial waters can range from very dilute waters through to highly concentrated brines. The REE concentrations and their behavior in natural terrestrial waters reflect these compositional ranges. Chemical weathering of rocks represents the source of the REEs to natural terrestrial waters and, consequently, the REE signature of rocks can impart their REE signature to associated waters. In addition, because of the typical low solubilities of the REEs, both surface and solution complexation can be important in fractionating REEs in aqueous solution. Both of these processes are important in all natural terrestrial waters, however, their relative importance varies as a function of the overall solution composition. In alkaline waters, for example, solution complexation of the REEs with carbonate ions appears to control their aqueous distributions whereas in acid waters, the REE signature of the labile fraction of the REEs is readily leached from the rocks. In circumneutral pH waters, both processes appear to be important and their relative significance has not yet been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banner, J. L., G. N. Hanson, and W. J. Meyers, 1988, Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian): Implications for REE mobility during carbonate diagenesis: J. Sediment. Petrol., v. 58, p. 415–432.

    Google Scholar 

  • Byrne, R. H. and K. H. Kim, 1993, Rare earth precipitation and coprecipitation behavior: The limiting role of PO 34 on dissolved rare earth concentrations in seawater: Geochim. et Cosmochim. Acta, v. 57, p. 519–526.

    Article  Google Scholar 

  • Cantrell, K. J. and R. H. Byrne, 1987, Rare earth element complexation by carbonate and oxalate ions: Geochim. et Cosmochim. Acta, v. 51, p. 597–605.

    Article  Google Scholar 

  • Choppin, G. R., 1983, Comparison of the solution chemistry of the actinides and the lanthanides: J. Less-Common Met., v. 93, p. 232–330.

    Article  Google Scholar 

  • Cullers, R. L. and J. L. Graf, 1984, Rare earth elements in igneous rocks of the continental crust: Intermediate and silicic rocks—ore petrogenesis, in P. Henderson, ed., Rare earth element geochemistry: Elsevier, Amsterdam, The Netherlands, p. 275–316.

    Google Scholar 

  • DeBaar, H. J. W., M. P. Bacon, P. G. Brewer, and K. W. Bruland, 1983, Rare earth distributions with a positive Ce anomaly in the western North Atlantic Ocean: Nature, v. 301, p. 324–327.

    Article  Google Scholar 

  • Elderfield, H., 1988, The oceanic chemistry of the rare-earth elements: Phil. Trans. R. Soc. Lond., v. A325, p. 105–126.

    Article  Google Scholar 

  • Elderfield, H. and M. J. Greaves, 1982, The rare earth elements in seawater: Nature, v. 296, p. 214–219.

    Article  Google Scholar 

  • Elderfield, H., R. Upstill-Goddard, and E. R. Sholkovitz, 1990, The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters: Geochim. et Cosmochim. Acta, v. 54, p. 971–991.

    Article  Google Scholar 

  • Fee, J. A., H. E. Gaudette, W. B. Lyons, and D. T. Long, 1992, Rare earth element distribution in the Lake Tyrrell groundwaters, Victoria, Australia: Chem. Geol., v. 96, p. 67–93.

    Article  Google Scholar 

  • Firsching, F. G. and S. N. Brune, 1991, Solubility products of the trivalent rare-earth phosphates: J. Chem. Eng. Data, v. 36, p. 93–95.

    Article  Google Scholar 

  • Firsching, G. G. and J. Mohammadzadel, 1986, Solubility products of the rare-earth carbonates: J. Chem. Eng. Data, v. 31, p. 40–42.

    Article  Google Scholar 

  • Fleet, A. J., 1984, Aqueous and sedimentary geochemistry of the rare earth elements, in P. Henderson, ed., Rare earth element geochemistry: Elsevier, Amsterdam, The Netherlands, p. 342–373.

    Google Scholar 

  • Frey, F. A., 1984, Rare earth element abundances in upper mantle rocks, in P. Henderson, ed., Rare earth element geochemistry: Elsevier, Amsterdam, The Netherlands, p. 153–203.

    Google Scholar 

  • Frey, F. A., B. W. Chappell, and S. D. Roy, 1978, Fractionation of the rare-earth elements in the Tuolumne Intrusive Series, Sierra Nevada batholith, California: Geology, v.6, p. 239–242.

    Google Scholar 

  • Goldberg, E. D., M. Koide, R. A. Schmitt, and R. H. Smith, 1963, Rare-earth distributions in the marine environment: J. Geophys. Res, v. 68, p. 4209–4217.

    Google Scholar 

  • Gosselin, D. G., M. R. Smith, E. A. Lepel, and J. C. Laul, 1992, Rare earth elements in chloride-rich groundwater, Palo Duro Basin, Texas, USA: Geochim. et Cosmochim. Acta, v. 56, p. 1495–1505.

    Article  Google Scholar 

  • Grandjean-Lécuyer, P., R. Feist, and F. Albarède, 1993, Rare earth elements in old biogenic apatites: Geochim. et Cosmochim. Acta, v. 57, p. 2507–1514.

    Article  Google Scholar 

  • Hanson, G. N., 1980, Rare earth elements in petrogenetic studies of igneous systems: Annu. Rev. Earth Planet. Sci., v. 8, p. 371–406.

    Article  Google Scholar 

  • Hoyle, J., H. Elderfield, A. Gledhill, and M. Greaves, 1984, The behavior of the rare earth elements during mixing of river and sea waters: Geochim. Et Cosmochim. Acta, v. 48, p. 143–149.

    Article  Google Scholar 

  • Jellison, R. and J. M. Melack, 1988, Photosynthetic activity of phytoplankton on its relation to environmental factors in hypersaline Mono Lake, California: Hydrobiologia, v.158, p. 69–88.

    Google Scholar 

  • Johannesson, K. H. and W. B. Lyons, 1994, The rare earth element geochemistry of Mono Lake water and the importance of carbonate complexing: Limnol. Oceanogr. v. 39, p. 1141–1154.

    Article  Google Scholar 

  • Johannesson, K. H. and W. B. Lyons, 1995, Rare-earth element geochemistry of Colour Lake, an acidic freshwater lake on Axel Heiberg Island, Northwest Territories, Canada: Chem. Geol., v.119, p. 209–223.

    Google Scholar 

  • Johannesson, K. H., W. B. Lyons, J. A. Fee, H. E. Gaudette, and J. M. McArthur, 1994a, Geochemical processes affecting the acidic groundwaters of Lake Gilmore, Yilgarn Block, western Australia: a preliminary study using neodymium, samarium, and dysprosium: J. Hydrol., v. 154, p. 271–289.

    Article  Google Scholar 

  • Johannesson, K. H., W. B. Lyons, and D. A. Bird, 1994b, Rare earth element concentrations and speciation in alkaline lakes from the western U.S.A.: Geophys. Res. Lett., v. 21, p. 773–776.

    Article  Google Scholar 

  • Johannesson, K. H., X. Zhou, and K. J. Stetzenbach, 1995a, Rare earth element distributions in groundwaters and evidence of interbasin flow in the desert southwest: Geol. Soc. Am. Abstr. Prog., v. 27, p. A96.

    Google Scholar 

  • Johannesson, K. H., X. Zhou, K. J. Stetzenbach, and V. F. Hodge, 1995b, Rare earth elements and groundwater mixing: EOS, v. 76, p. F276.

    Article  Google Scholar 

  • Johannesson, K. H., K. J. Stetzenbach, and V. F. Hodge, 1995c, Speciation of the rare earth element neodymium in groundwaters of the Nevada Test Site and Yucca Mountain and implications for actinide solubility: Appl. Geochem., v. 10, p. 565–572.

    Article  Google Scholar 

  • Johannesson, K. H., W. B. Lyons, K. J. Stetzenbach, and R. H. Byrne, 1995d, The solubility control of rare earth elements in natural terrestrial waters and the significance of PO 34 and CO 23 in limiting dissolved rare earth concentrations: a review of recent information: Aquatic Geochem., v. 1, p. 157–173.

    Article  Google Scholar 

  • Johannesson, K. H., K. J. Stetzenbach, V. F. Hodge, and W. B. Lyons, 1996a, Rare earth element complexation behavior in circumneutral pH groundwaters: assessing the role of carbonate and phosphate ions: Earth Planet. Sci. Lett., v. 139, p. 305–320.

    Article  Google Scholar 

  • Johannesson, K. H., W. B. Lyons, M. A. Yelken, H. E. Gaudette, and K. J. Stetzenbach, 1996b, Geochemistry of the rare earth elements in hypersaline and dilute acidic natural terrestrial waters: complexation behavior and middle rare earth enrichments: Chem. Geol. (in press).

  • Jonasson, R. G., G. M. Bancroft, and H. W. Nesbitt, 1985, Solubilities of some hydrous REE phosphates with implications for diagenesis and sea water concentrations: Geochim. et Cosmochim. Acta, v. 49, p. 2133–2139.

    Article  Google Scholar 

  • Kelleher, P. C. and K. L. Cameron, 1990, The geochemistry of the Mono Craters-Mono Lake islands volcanic complex, eastern California: J. Geophys. Res., v. 95, p. 17643–17659.

    Article  Google Scholar 

  • Klinkhammer, G., H. Elderfield, and A. Hudson, 1983, Rare earth elements in seawater near hydrothermal vents: Nature, v. 305, p. 185–188.

    Article  Google Scholar 

  • Lee, J. H. and R. H. Byrne, 1992, Examination of comparative rare earth element complexation behavior using linear free-energy relationships: Geochim. et Cosmochim. Acta, v. 56, p. 1127–1137.

    Article  Google Scholar 

  • Lee, J. H. and R. H. Byrne, 1993, Complexation behavior of the trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions: Geochim. et Cosmochim. Acta, v. 57, p. 295–302.

    Article  Google Scholar 

  • McKay, G. A., 1989, Partitioning of rare earth elements between major silicate minerals and basaltic melts, in B. A. Lipin and G. A. McKay, eds., Geochemistry and mineralogy of the rare earth elements: Mineral. Soc. Am., Reviews in Mineralogy, Washington, DC, v. 21, p. 45–77.

    Google Scholar 

  • Millero, F. J., 1992, Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength: Geochim. et Cosmochim. Acta, v. 56, p. 3123–3132.

    Article  Google Scholar 

  • Möller, P. and M. Bau, 1993, Rare-earth patterns with positive cerium anomaly in alkaline lake waters from Lake Van, Turkey: Earth Planet. Sci. Lett., v. 117, p. 671–676.

    Article  Google Scholar 

  • Nordstrom, D. K., V. Carlson-Foscz, and N. Oreskes, 1995, Rare earth element (REE) fractionation during acidic weathering of San Juan Tuff, Colorado: Geol. Soc. Am. Abstr. Prog., v. 27, p. A199.

    Google Scholar 

  • Novak, S. W. and G. A. Mahood, 1986, Rise and fall of a basalt-trachyte-rhyolite magma system at the Kane Spring Wash Caldera, Nevada: Contrib. Mineral. Petrol., v. 94, p. 352–373.

    Article  Google Scholar 

  • Palmer, M. R., 1985, Rare earth elements in foraminifera tests: Earth Planet. Sci. Lett., v. 73, p. 285–298.

    Article  Google Scholar 

  • Palmer, M. R. and H. Elderfield, 1986, Rare earth elements and neodymium isotopes in ferro-manganese oxide coatings of Cenozoic foraminifera from the Atlantic Ocean: Geochim. et Cosmochim. Acta, v. 50, p. 409–417.

    Article  Google Scholar 

  • Parekh, P. P., P. Möller, P. Dulski, and W. M. Bausch, 1977, Distribution of trace elements between carbonate and non-carbonate phases of limestone: Earth Planet. Sci. Lett., v. 34, p. 39–50.

    Article  Google Scholar 

  • Piepgras, D. J. and G. J. Wasserburg, 1980, Neodymium isotopic variations in seawater: Earth Planet. Sci. Lett., v. 50, p. 128–138.

    Google Scholar 

  • Schaltegger, U., P. Stille, N. Rais, A. Pique, and N. Clauer, 1994, Neodymium and strontium isotopic dating of diagenesis and low-grade metamorphism of argillaceous sediments: Geochim. Et Cosmochim. Acta, v. 58, p. 1471–1481.

    Article  Google Scholar 

  • Schuraytz, B. C., T. A. Vogel, and L. W. Younker, 1989, Evidence for dynamic withdrawal from a layered magma body: The Topopah Spring Tuff, southwestern Nevada: J. Geophys. Res., v. 94, p. 5925–5942.

    Article  Google Scholar 

  • Sholkovitz, E. R., 1988, Rare earth elements in sediments of the North Atlantic Ocean, Amazon Delta, and East China Sea: Reinterpretation of terrigenous input patterns to the oceans: Am. J. Sci., v. 288, p. 236–281.

    Article  Google Scholar 

  • Sholkovitz, E. R., 1993, The geochemistry of the rare earth elements in the Amazon Estuary: Geochim. et Cosmochim. Acta, v. 57, p. 2181–2190.

    Article  Google Scholar 

  • Sholkovitz, E.R., 1995, The aquatic geochemistry of the rare earth elements in rivers and estuaries: Aquatic Geochem., v. 1, p. 1–43.

    Article  Google Scholar 

  • Sholkovitz, E.R. and H. Elderfield, 1988, The cycling of dissolved rare earth elements in Chesapeake Bay: Global Biogeochem. Cycles, v. 2, p. 157–176.

    Article  Google Scholar 

  • Sholkovitz, E. R., W. M. Landing, and B. L. Lewis, 1994, Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater: Geochim. et Cosmochim. Acta, v. 58, p. 1567–1580.

    Article  Google Scholar 

  • Smedley, P. L., 1991, The geochemistry of rare earth elements in groundwater from the Carnmenellis area, Southwest England: Geochim. Et Cosmochim. Acta, v. 55, p. 2767–2779.

    Article  Google Scholar 

  • Smith, R. M. and A. E. Martell, 1976, Critical Stability Constants, Volume 4, Inorganic Complexes: New York, Plenum Press.

    Google Scholar 

  • Stetzenbach, K. J., M. Amano, D. K. Kreamer, and V. F. Hodge, 1994, Testing the limits of ICP-MS determination of trace elements in groundwaters at the parts-per-trillion level: Ground Water, v. 32, p. 976–985.

    Article  Google Scholar 

  • Sverjensky, D. A., 1984, Europium redox equilibria in aqueous solutions: Earth Planet. Sci. Lett., v. 67, p. 70–78.

    Article  Google Scholar 

  • Taylor, S. R. and S. M. McLennan, 1985, The continental crust: its composition and evolution: Blackwell.

  • Turner, D. R., M. Whitfield, and A. G. Dickson, 1981, The equilibrium speciation of dissolved components in freshwater and seawater at 25°C and 1 atm pressure: Geochim. et Cosmochim. Acta, v. 45, p. 855–881.

    Article  Google Scholar 

  • Wood, S. A., 1990, The aqueous geochemistry of the rare-earth elements and yttrium, 1. Revies of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters: Chem. Geol., v. 82, p. 159–186.

    Article  Google Scholar 

  • Wright, J., H. Schrader, and W. T. Holser, 1987, Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite: Geochim. et Cosmochim. Acta, v. 51, p. 631–644.

    Article  Google Scholar 

  • Yelken, M. A., K. H. Johannesson, W. B. Lyons, and H. E. Gaudette, 1995, Speciation of the rare earth elements in acid, saline waters of Lakes Tyrrell and Gilmore, Australia: Annul. Meet. Am. Soc. Limnol. Oceanogr., Reno, Nev., p.a-65.

  • Zhou, X., K. H. Johannesson, and K. J. Stetzenbach, 1995, Batch tests for crushed rocks and pH = 7 distilled water: A first look at rock imparted aqueous rare earth element signatures: EOS, v. 76, p. 275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johannesson, K.H., Xiaoping, Z. Geochemistry of the rare earth elements in natural terrestrial waters: A review of what is currently known. Chin. J. Geochem. 16, 20–42 (1997). https://doi.org/10.1007/BF02843369

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02843369

Key words

Navigation