Skip to main content
Log in

Ionic and signal transduction alterations in Alzheimer’s disease

Relevance of studies on peripheral cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Several lines of, evidence indicate that Alzheimer’s disease (AD) has systemic expression. Systemic changes are manifested as alterations in a number of molecular and cellular processes. Although, these alterations appear to have little or no consequence in peripheral systems, their parallel expression in the central nervous system (CNS) could account for the principal clinical manifestations of the disease. Recent research seems to indicate that alterations in ion channels, calcium homeostasis, and protein kinase C (PKC) can be linked and thereby constitute a model of pathophysiological relevance. Considering the difficulties of studying dynamic pathophysiological processes in the disease-ridden postmortem AD brain, peripheral tissues such as fibroblasts provide a suitable model to study molecular and cellular aspects of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selkoe, D. J. (1994) Normal, and abnormal biology of the β-amyloid precursor protein.Annu. Rev. Neurosci. 17, 489–517.

    PubMed  CAS  Google Scholar 

  2. Tanzi, R. E., Kovacs, D. M., Kim, T., Moir R. D., Guenette, S. Y., and Wasco W. (1996) The gene defects responsible for familial Alzheimer's disease.Neurobiol. Disease 3, 159–168.

    CAS  Google Scholar 

  3. Selkoe, D. J. (1997) Alzheimer's disease: genotypes, phenotype and treatments.Science 275, 630–631.

    PubMed  CAS  Google Scholar 

  4. Hardy, J. (1997) Amyloid, the presenilins and Alzheimer's diseaseTINS 20, 154–159.

    PubMed  CAS  Google Scholar 

  5. Lendon, C. L., Ashall, F., and Goate, A. M. (1997) Exploring the etiology of Alzheimer disease using molecular genetics.JAMA 277, 825–831.

    PubMed  CAS  Google Scholar 

  6. Selkoe, D. J. (1999) Transplanting cell biology into therapeutic advances in Alzheimer's disease.Nature 399, A23-A31.

    PubMed  CAS  Google Scholar 

  7. Gibson G., Martins, R., Blass, J., and Gandy, S. (1996) Altered oxidation and signal transduction systems in fibroblasts from Alzheimer patients, inLife Sciences, vol. 59 (Muller W. E., and Gispen W. H., eds.), Elsevier, Heidelberg, Germany, pp. 477–489.

    Google Scholar 

  8. Baker, A. C., Ko L-W., and Blass, J. P. (1988) Systemic manifestations of Alzheimer's disease.Age 11, 60–65.

    Google Scholar 

  9. Scott, R. B. (1993) Extraneuronal manifestations of Alzheimer's disease.JAGS 41, 268–276.

    CAS  Google Scholar 

  10. Huang, H-M., Martins, R., Gandy, S., Etcheberrigaray, R., Ito, E., Alkon, D. L., et al. (1994) Use of cultured fibroblasts in elucidating the pathophysiology and diagnosis of Alzheimer's disease.Ann. N. Y. Acad. Sci. 747, 225–243.

    PubMed  CAS  Google Scholar 

  11. Gasparini, L., Racchi, M., Binetti, G., Trabucchi, M., Solerte, B., Alkon, D. L., et al. (1997) Peripheral markers in testing pathophysiological hypotheses and diagnosing Alzheimer's disease.FASEB J. 12, 17–34.

    Google Scholar 

  12. Connolly, G. P. (1998) Fibroblast models of neurological disorders: fluorescence measurement studies.TIPS 19, 171–177.

    PubMed  CAS  Google Scholar 

  13. Seegmiller, J. E., Rosenbloom, F. M., and Kelley, N. W. (1967) An enzyme defect associated with a sex-linked human neurological disorder and an excessive purine synthesis.Science 155, 1682–1686.

    PubMed  CAS  Google Scholar 

  14. Okada, S. and O'Brien, J. S. (1969) Tay-Sachs disease: generalized absence of a beta-d-N-acetylhexosaminidase component.Science 165, 698–701.

    PubMed  CAS  Google Scholar 

  15. Etcheberrigaray, R., Gibson, G. E., and Alkon, D. L. (1994) Molecular mechanisms of memory and the pathophysiology of Alzheimer's disease.Ann. N. Y. Acad. Sci. 747, 245–255.

    PubMed  CAS  Google Scholar 

  16. Etcheberrigaray, R. and Alkon, D. L. (1995) Potassium channels and internal calcium release: relevance for memory storage and Alzheimer's disease, inPharmacological Control of Calcium and Potassium Homeostasis: Biological, Therapeutical, and Clinical Aspects (Godfraind, T., Mancia, G., Abracchio, M. P., Aguilar-Bryan L., and Govoni S., eds.), Kluwer Academic Publishers, Dordrecht, pp. 277–335.

    Google Scholar 

  17. Good, T. A., Smith, D. O., and Murphy, R. M. (1996) β-amyloid peptide blocks the fast-inactivating K+ current in rat hippocampal neurons.Biophys. J. 70, 296–304.

    PubMed  CAS  Google Scholar 

  18. Cole, G., Dobkins, K. R., Hansen, L. A., Terry, R. D., and Saitoh, T. (1988) Decreased levels of protein kinase C in Alzheimer brain.Brain Res. 452, 165–174.

    PubMed  CAS  Google Scholar 

  19. Masliah, E., Cole, G., Shimohada, S., Hansen, L., DeTeresa, R., Terry, R. D., Saitoh, T. (1990) Differential involvement of protein kinase C isozymes in Alzheimer's disease.J. Neurosci. 10, 2113–2124.

    PubMed  CAS  Google Scholar 

  20. Shimohama, S., Narita, M. A., Matsushima, H., Kimura J., Kamejama, M., Hagiwara, M., et al. (1993) Assessment of protein kinase C isozymes by two-site enzyme immunoassay in human brains and changes in Alzheimer's disease.Neurology 43, 1407–1413.

    PubMed  CAS  Google Scholar 

  21. Sah, P. (1996) Ca2+-activated K+ currents in neurons: types, physiological roles and modulation.Trends Neurosci. 19, 151–154.

    Google Scholar 

  22. Allen, J. W. and Etcheberrigaray, R. (1998) Potassium channels in neuropsychiatric disorders: potential for pharmacological intervention.Pharmacol. Pathophysiol. 10, 63–82.

    Google Scholar 

  23. Triggle, D. J. (1994) Ion channels and diseases.Drug Dev. Res..33, 364–372.

    CAS  Google Scholar 

  24. Alkon, D. L. (1984) Calcium-mediated reduction of ionic currents: a biophysical memory trace.Science 226, 1037–45.

    PubMed  CAS  Google Scholar 

  25. Collin, C., Ikeno, H., Harrigan, J. F., Lederhendler, I., and Alkon, D. L. (1988) Sequential modification of membrane currents with classical conditioning.Biophys. J. 55, 55–60.

    Google Scholar 

  26. Alkon, D. L. (1989) Memory storage and neural systems.Sci. Ameri. 261, 42–50.

    CAS  Google Scholar 

  27. Sánchez-Andrés, J. V., and Alkon, D. L. (1991) Voltage-clamp analysis of the effects of classical conditioning on the hippocampus.J. Neurophysiol. 65, 796–807.

    PubMed  Google Scholar 

  28. Klein, M., Camardo, J., and Kandel, E. R. (1982) Serotonin modulates a specific potassium current in the sensory neurons that show presynaptic facilitation in Aplysia.Proc. Natl. Acad. Sci. USA 79, 5713–5717.

    PubMed  CAS  Google Scholar 

  29. Fazer, S. P., Suh, Y-H., and Djamgoz, M. B. A. (1997) Ionic effects of the Alzheimer's disease β-amyloid precursor protein and its metabolic fragments.Trends Neurosci. 20, 67–72.

    Google Scholar 

  30. Sackmann, B. and Neher I. (1995)Single Channel Recording, 2nd ed. Plenum New York, NY.

    Google Scholar 

  31. Etcheberrigaray, R., Ito, E., Oka, K., Tofel-Grehl, B., Gibson, G. E., Alkon, D. L. (1993) Potassium channel dysfunction in fibroblasts identifies patients with Alzheimer disease.Proc. Natl. Acad. Sci. USA 90, 8209–8213.

    PubMed  CAS  Google Scholar 

  32. Gandy, S. and Greengard, P. (1994) Processing of Alzheimer Aβ-amyloid precursor protein: cell biology, regulation, and role in Alzheimer disease.Int. Rev. Neurobiol. 36, 29–50.

    PubMed  CAS  Google Scholar 

  33. Yankner, B. A. (1996) Mechanisms of neuronal degeneration in Alzheimer's disease.Neuron 16, 921–932.

    PubMed  CAS  Google Scholar 

  34. Etcheberrigaray, R., Ito, E., Kim, C. S., and Alkon, D. L. (1994) Soluble β-amyloid induction of Alzheimer's phenotype for human fibroblast K+ channels.Science 264, 276–279.

    PubMed  CAS  Google Scholar 

  35. Ida, N., Maters, C. L., and Beyreuther, K. (1996) Rapid cellular intake of Alzheimer amyloid βA4 peptide by cultured human neuroblastoma cells.FEBS Lett. 394 174–178.

    PubMed  CAS  Google Scholar 

  36. Bhagavan, S., Ibarreta, D., Ma, D., Kozikowski, A. P., and Etcheberrigaray, R. (1998) Restoration of TEA-induced calcium responses in fibroblasts from Alzheimer's disease patients by a PKC activator.Neurobiol. Disease 5, 177–187.

    CAS  Google Scholar 

  37. Ibarreta, D., Duchen, M., Ma, D., Qiao, L., Kozikowski, A. P., and Etcheberrigaray, R. (1999) Benzolactam (BL) enhances sAPP secretion in fibroblasts and PC12 cells.NeuroReport 10, 1035–1040.

    PubMed  CAS  Google Scholar 

  38. Cahalan, M. D., Chandy, K. K., DeCoursey, T. E., Gupta, S., Lewis, R. S., and Sutro, J. B. (1988) Ion channels in T-lymphocytes, inMechanisms of Lymphocyte Activation and Immune Regulation, (Gupta, S., and Paul W. E., eds.), Plenum Press, New York, NY, pp. 85–101.

    Google Scholar 

  39. Gefland, E. W., Cheung, R. W., and Grinstein, S. T. (1984) Role of membrane potential in the regulation of lecitin induced calcium uptake.J. Cell. Physiol. 121, 533–537.

    Google Scholar 

  40. Bondy, B., Hofmann, M., Müller-Spahn, F., Witzko, M., and Hock, C. (1996) The PHA-induced calcium signal in lymphocytes is altered after blockade of K+ channels in Alzheimer's disease.J. Psychiat. Res. 30, 217–227.

    PubMed  CAS  Google Scholar 

  41. de Silva, H. A., Aronson, J. K., Grahame-Smith, D. G., Jobst K. A., and Smith, A. D. (1998) Abnormal function of potassium channels in platelets of patients with Alzheimer's disease.The Lancet 352, 1590–1593.

    Google Scholar 

  42. Failli, P., Tesco, G., Ruocco, C., Ginestroni, A., Amaducci, L., Giotti, A., and Sorbi, S. (1996) The effect of tetraethylammonium on intracellular calcium concentration in Alzheimer's disease fibroblasts with APP, S182 and E5-1 missense mutations.Neurosci. Lett. 208, 216–218.

    PubMed  CAS  Google Scholar 

  43. Matsuyama, S. S., Yamaguchi, D. T., Vegara, J., Jarvik, L. F. (1995) Tetraethylammonium-induced calcium concentration changes in skin fibroblasts from patients with Alzheimer disease.Dementia 6, 241–244.

    PubMed  CAS  Google Scholar 

  44. Furukawa, K., Barger, S. W., Blalock, E. M., and Mattson, M. P. (1996) Activation of K+ channels and suppression of neural activity by secreted β-amyloid-precursor protein.Nature 379, 74–78.

    PubMed  CAS  Google Scholar 

  45. Cohen, C. D., Vollmayr, B., and Aldenhoff, J. B. (1996) K+ currents of human T-lymphocytes are unaffected by Alzheimer's disease and amyloid β protein.Neurosci. Lett. 202, 177–180.

    PubMed  CAS  Google Scholar 

  46. Ikeda, M., Dewar, D., and McCullock, J. (1991) Selective reduction of [125I]apamin binding sites in Alzheimer hippocampus: a quantitative autoradiographic study.Brain Res. 567, 51–56.

    PubMed  CAS  Google Scholar 

  47. Ikeda, M., Dewar, D., and McCullock, J. (1993) Differential alterations of ion channel binding sites in temporal and occipital regions of the cerebral cortex in Alzheimer's disease.Brain Res 630, 50–56.

    PubMed  CAS  Google Scholar 

  48. Simmons, M. A. and Schneider, C. R. (1993) Amyloid β peptides act directly on single neurons.Neurosci, Lett,150, 133–136.

    CAS  Google Scholar 

  49. Furukawa, K., Abe, Y., and Akaike, N. (1994) Amyloid β protein-induced irreversible current in rat cortical neurones.NeuroReport 5, 2016–2018.

    PubMed  CAS  Google Scholar 

  50. Galdzicki, Z., Furuyama, R., Waldhwani, K. C., Ehrenstein, G., and Rapoport, S. I. (1993) Alzheimer disease β-amyloid polypeptide increases permeability of PC12 cells membrane.Soc. Neurosci. Abs. 19, 397a.

    Google Scholar 

  51. Galdzicki, Z., Furuyama, R., Waldhwani, K. C., Rapoport, S. I., and Ehrenstein, G. (1994) β-Amyloid increases choline conductance of PC12 cells: possible mechanism of toxicity in Alzheimer's disease.Brain Res. 646, 332–336.

    PubMed  CAS  Google Scholar 

  52. Fraser, S. P., Suh, Y-H., Chong, Y. H., and Djamgoz, M. B. A. (1996) Membrane currents induced inXenopus oocytes by the C-terminal fragment of the β-amyloid precursor protein.J. Neurochem. 66, 2034–2040.

    PubMed  CAS  Google Scholar 

  53. Ueda, K., Shinohara, S., Yagami T., Asakura, K., and Kawasaki, K. (1997) Amyloid β protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: a possible involvement of free radicals.J. Neurochem. 68, 265–271.

    PubMed  CAS  Google Scholar 

  54. Ye, C., Ho-Pao, C. L., Kanazirska, M., Quinn, S., Rogers, K., Seidman, C. E., et al. (1997) Amyloid β proteins activate Ca2+-permeable channels through calcium-sensing receptor.J. Neurosci. Res. 47, 547–554.

    PubMed  CAS  Google Scholar 

  55. Arispe, N., Pollard, H. B., and Rojas, E. (1993) Giant multilevel cation channels formed by Alzheimer's disease amyloid β-protein [AβP-(1–40)] in bilayer membranes.Proc. Natl. Acad. Sci. USA 90, 10573–10577.

    PubMed  CAS  Google Scholar 

  56. Mirzabekov, T., Lin, M-C., Yuan, W-L., Marshall, P. J., Carman, M., Tomaselli, K., et al. (1994) Channel formation in planar lipid bilayers by a neurotoxic fragment of beta-amyloid peptide.Biochem. Biophys. Res. Commun. 202, 1142–1148.

    PubMed  CAS  Google Scholar 

  57. Weiss, J. H., Pike, C. J., and Cotman, C. W. J. (1994) Ca2+ channel blockers attenuate β-amyloid peptide toxicity to cortical neurons in culture.Neurochem. 62, 372–375.

    CAS  Google Scholar 

  58. Engstrom, I., Ronquist, G., Pettersson, L., and Waldenstrom, A. (1995) Alzheimer amyloid β-peptides exhibit ionophore-like properties in human erythrocytes.Euro. J. Clin. Investig. 25, 471–476.

    CAS  Google Scholar 

  59. Kawahara, M., Arispe, N., Kuroda, Y., and Rojas, E. (1997) Alzheimer's disease β-amyloid proteins form Zn2+-sensitive, cation-selective channels across excised membrane patches form hypothalamic neurons.Biophys. J. 73, 67–75.

    PubMed  CAS  Google Scholar 

  60. Rhee, S. K., Quist, A. P., and Lal, R. (1998) Amyloid β-protein-(1–42) forms calcium-permeable, Zn2+-sensitive channel.T. J. Biol. Chem. 273, 13379–13382.

    PubMed  CAS  Google Scholar 

  61. Mattson, M. P., Barger, S. W., Cheng, B., Lieberburg, I., Smith-Swintosky, V. L., and Rydel, R. E. (1993) β-amyloid precursor protein metabolities and loss of neuronal Ca2+ homeostasis in Alzheimer's disease.TINS 16, 409–414.

    PubMed  CAS  Google Scholar 

  62. Khachaturian, Z. S. (1994) Calcium hypothesis of Alzheimer's disease and brain aging, inCalcium Hypothesis of Aging and Dementia, vol. 747 (Disterhoft J. F., Gispen W. H., Traber J., and Khachaturian, Z. S., eds.) The New York Academy of Sciences, New York, NY, pp. 1–11.

    Google Scholar 

  63. Pascale, A., and Etcheberrigaray, R. (1999) Calcium alterations in Alzheimer's disease: pathophysiology, models and therapeutic opportunities.Pharmacol. Res. 39, 81–88.

    PubMed  CAS  Google Scholar 

  64. Peterson, C., Ratan, R. R., Shelanski, M. L., Goldman, J. E. (1986) Cytosolic free calcium and cell spreading decrease in fibroblasts from aged and Alzheimer donors.Proc. Natl. Acad. Sci. USA 83, 7999–8001.

    PubMed  CAS  Google Scholar 

  65. Borden, L. A., Maxfield, F. R., Goldman, J. E., Shelanski, M. L. (1991) Resting [Ca2+]I and [Ca2+]I transients are similar in fibroblasts from normal and Alzheimer's donors.Neurobiol. Aging 13, 33–38.

    Google Scholar 

  66. Ito, E., Oka, K., Etcheberrigaray, R., Nelson, T., McPhie, D. L., Tofel-Grehl, B. et al. (1994) Internal Ca2+-mobilization is altered in fibroblasts from patients with Alzheimer's disease.Proc. Natl. Acad. Sci. USA 91, 534–538.

    PubMed  CAS  Google Scholar 

  67. Peterson, C., Ratan, R. R., Shelanski, M. L., Goldman, J. E. (1988) Altered response of fibroblasts from aged and Alzheimer donors to drugs that elevate cytosolic free calcium.Neurobiol. Aging 9, 261–266.

    PubMed  CAS  Google Scholar 

  68. McCoy, K. R., Mullins, R. D., Newcomb, T. G., Ng, G. M., Pavlinkova, G., Polinsky, R. J., et al. (1993) Serum- and bradykinin-induced calcium transients in familial Alzheimer's fibroblasts.Neurobiol. Aging 14, 447–455.

    PubMed  CAS  Google Scholar 

  69. Tatebayashi, Y., Masatoshi, T., Kashiwagi, Y., Masayasu, O., Kurumadani, T., Sekiyama, A., et al. (1995) Cell-cycle dependent abnormal calcium response in fibroblasts from patients with familial Alzheimer's disease.Dementia 6, 9–16.

    PubMed  CAS  Google Scholar 

  70. Hirashima, N., Etcheberrigaray, R., Bergamashi, S., Racchi, M., Battaini, F., Binetti, G., et al. (1996) Calcium responses in human fibroblasts: a diagnostic molecular profile for Alzheimer's disease.Neurobiol. Aging 17, 549–555.

    PubMed  CAS  Google Scholar 

  71. Gibson, G. E., Vestling, M., Zhang, H., Szolosi, S., Alkon, D., Lannfelt, L., Gandy, S., and Cowburn R. F. (1997) Abnormalities in Alzheimer's disease fibroblasts bearing the APP670/671 mutation.Neurobiol. Aging 6, 573–580.

    Google Scholar 

  72. Huang, H-M., Lin, T-A., Sun, G. Y., and Gibson, G. E. (1995) Increased inositol 1,4,5-trisphosphate accumulation correlates with an upregulation of bradykinin receptors in Alzheimer's disease.J. Neurochem. 64, 761–766.

    PubMed  CAS  Google Scholar 

  73. Vestling, M., Cedazo-Minguez, A., Adem, A., Wiehager, B., Racchi, M., Lannfelt, L., and Cowburn R. F. (1999) Protein kinase C levels and amyloid precursor protein processing in skin fibroblasts from sporadic and familial Alzheimer's disease cases.Biochem. Biophys. Acta.1453, 341–350.

    PubMed  CAS  Google Scholar 

  74. Etcheberrigaray, R., Hirashima, N., Nee, L., Prince, J., Govoni, S., Racchi, M., et al. (1998) Calcium responses in fibroblasts from asymptomatic members of Alzheimer's disease families.Neurobiol. Disease 5, 37–45.

    CAS  Google Scholar 

  75. Huang, H-M., Ou, H-C., and Hsueh S-J. (1998) Amyloid b peptide enhanced bradykinin-mediated inositol (1,4,5) triphosphate formation and cytosolic free calcium.Life Sci. 63, 195–203.

    PubMed  CAS  Google Scholar 

  76. Adunsky, A., Baram, D., Hershkowitz, M., and Mekori, Y. A. (1991) Increased cytosolic free calcium in lymphocytes of Alzheimer patients.J. Neuroimmunol. 33, 167–172.

    PubMed  CAS  Google Scholar 

  77. Ibarreta, D., Parrilla, R., and Ayuso, M. S. (1997) Altered Ca2+ homeostasis in lymphoblasts from patients with late-onset Alzheimer's disease.Alzheimer Disease Associated Disorders 11, 220–227.

    CAS  Google Scholar 

  78. Bondy, B., Klages, U., Muller-Spahn, R., and Hock, C. (1994) Cytosolic free calcium in mononuclear blood cells from demented patients and healthy controls.Europ. Arch. Psychiatry Clin. Neurosci. 243, 224–228.

    CAS  Google Scholar 

  79. Garlind A., Nilsson, E., and Palmblad, J. (1998) Calcium ion transients in neutrophils from patients with sporadic Alzheimer's disease.Neurosci. Lett. 255, 95–98.

    PubMed  CAS  Google Scholar 

  80. Le Quan Sang, K. H., Mignot, E., Gilbert, J. C., Huguet, R., Aquino, J. P., Reginer, O., and Devynck, M. A. (1993) Platelet cytosolic free-calcium concentration is increased in aging and Alzheimer's disease.Biol. Psychiatry 33, 391–393.

    PubMed  Google Scholar 

  81. Lee-Way, J., and Saitoh, T. (1995) Changes in protein kinases in brain aging and Alzheimer's disease.Drugs Aging 6, 136–149.

    Google Scholar 

  82. Olds, J. L., and Alkon, D. L. (1993) Protein kinase C: a nexus in the biochemical events that underlie associative learning.Acta Neurobiol. Exp. 53, 197–207.

    CAS  Google Scholar 

  83. Nishizuka, Y. (1988) The molecular heterogeneity of protein kinase C and its implications in cellular regulation.Nature 334, 661–665.

    PubMed  CAS  Google Scholar 

  84. Newton, A. C. (1995) Protein kinase C: structure, function, and regulation.J. Biol. Chem. 270, 28,495–28,498.

    CAS  Google Scholar 

  85. Pascale, A., Govoni, S., and Battaini, F. (1998) Age-related alterations of PKC, a key enzyme in memory processes: physiological and pathological examples.Mol. Neurobiol. 16, 49–62.

    PubMed  CAS  Google Scholar 

  86. O'Brian, C. A., and Ward, N. E. (1989) Biology of the protein kinase C family.Cancer Metastasis Rev. 8, 199–214.

    PubMed  Google Scholar 

  87. Nishino, N., Kitamura, N., Nakai, T., Hashimoto, T., and Tanaka, C. (1989) Phorbol ester binding sites in human brain: characterization, regional distribution, age-correlation, and alterations in Parkinson's disease.J. Mol. Neurosci. 1, 19–26.

    PubMed  CAS  Google Scholar 

  88. Wang, H-Y., Pisano, M. R., and Friedman E. (1994) Attenuated protein kinase C activity and translocation in Alzheimer's disease brain.Neurobiol. Aging 15, 293–298.

    PubMed  CAS  Google Scholar 

  89. Masliah, E., Cole, G. M., Hansen, L. A., Mallory, M., Albright, T., Terry R. D., and Saitoh, T. (1991) Protein kinase C alterations is an early biochemical marker in Alzheimer's disease.J. Neurosci. 11, 2759–2767.

    PubMed  CAS  Google Scholar 

  90. Chachin, M., Shimohama, S., Kunugi, Y., and Taniguchi, T. (1996) Assessment of protein kinase C mRNA levels in Alzheimer's disease brains.Jpn. J. Pharmacol. 71, 75–177.

    Google Scholar 

  91. Horsburg, K., Deward, D., Graham, D., and McCulloch, J. (1991) Autoradiographic imaging of [3H] phorbol 12, 13-dibutyrate binding to protein kinase C in Alzheimer's disease.J. Neurochem. 56, 1121–1129.

    Google Scholar 

  92. Clark, E. A., Leach, K. L., Trojanowski, J. Q., and Lee, V. M-Y. (1991) Characterization and distribution of the three major human protein kinase C isozymes (PKCα, PKCβ, PKCγ) of the central nervous system in normal and Alzheimer's disease brains.Lab. Invest. 64, 35–44.

    PubMed  CAS  Google Scholar 

  93. Huynh, T. V., Cole, G., Katzman, R., Huang, K-P., and Saitoh, T. (1989) Reduced protein kinase C immunoreactivity and altered protein phosphorylation in Alzheimer's disease fibroblasts.Arch. Neurol. 46, 1195–1199.

    PubMed  Google Scholar 

  94. Govoni, S., Bergamaschi, S., Racchi, M., Battaini, F., Binetti G., Bianchetti, A., Trabucchi, M. (1993) Cytosol protein kinase C downregulation in fibroblasts from Alzheimer's disease patients.Neurology 43, 258–2586.

    Google Scholar 

  95. Racchi, M., Wetsel, W. C., Trabucchi, M., Govoni, S., Battaini, F., Binetti, G., Bianchetti, A., and Bergamaschi, S. (1994) Reduced protein kinase C immunoreactivity in fibroblasts from patients with Alzheimer's disease.Neurology 44, A164.

    Google Scholar 

  96. Govoni, S., Racchi, M., Bergamaschi, M., Trabucchi, M., Battaini, F., Bianchetti, A., and Binetti, G. (1996) Defective Protein Kinase C α leads to impaired secretion of soluble β-amyloid precursor protein from Alzheimer's disease fibroblasts.Ann. N.Y. Acad. Sci. 777, 332–337.

    PubMed  CAS  Google Scholar 

  97. Bergamaschi, S., Binetti, G., Govoni, S., Wetsel, W. C., Battaini, F., Trabucchi, M., et al. (1995) Defective phorbol ester-stimulated secretion of β-amyloid precursor protein from Alzheimer's disease fibroblasts.Neurosci. Lett. 201, 1–4.

    PubMed  CAS  Google Scholar 

  98. Desdouits, F., Buxbaum, J. D., Desdouits-Magnen, J., Nairn, A. C., and Greengard, P. (1996) Amyloid β peptide formation in cell free preparations: regulation by protein kinase C, calmodulin, and calcineurin.J. Biol. Chem. 271, 24,670–24,674.

    CAS  Google Scholar 

  99. Efhimiopoulos, S., Punj, S., Manopoulos, V., Pangalos, M., Wang, G. P., Refolo, L. M., and Robakis N. K. (1996) Intracellular cyclic AMP inhibits constitutive and phorbol ester-stimulated secretory cleavage of amyloid precursor protein.J. Neurochem. 67, 872–875.

    Google Scholar 

  100. Fuller, S. J., Storey, E., Li, Q-X., Smith, A. I., Beyreuther, K., and Masters, C. L. (1995) Intracellular Production of βA4 Amyloid of Alzheimer's disease: modulation by phosphoramidon and lack of coupling to the secretion of the amyloid precursor protein.Biochemistry 34, 8091–8098.

    PubMed  CAS  Google Scholar 

  101. LeBlanc, A. C., Koutroumanis, M., and Goodyer, C. G. (1998) Protein kinase C activation increases release of secreted amyloid precursor protein without decreasing Aβ production in human primary neuron cultures.J. Neurosci. 18, 2907–2913.

    PubMed  CAS  Google Scholar 

  102. Savage, M. J., Trusko, S. P., Howland, D. S., Pinsker, L. P., Mistretta, S., Reaume, A. G., et al. (1998) Turnover of amyloid β-protein in mouse brain and acute reduction of its level by phorbol ester.J. Neurosci. 18, 1743–1752

    PubMed  CAS  Google Scholar 

  103. Kozikowski, A. P., Wang, S., Ma, D., Yao, J., Ahmad, S., Glazer, R. I., et al. (1997) Modeling, chemistry, and biology of the benzolactam analogues of ILV. 2. Identification of the binding site of the benzolactams in the CRD2 activator-binding domain of PKCσ and discovery of an ILV analogue of improved isozyme selectivity.J. Med. Chem. 40, 1316–1326.

    PubMed  CAS  Google Scholar 

  104. Citron, M., Vigo-Pelfrey, C., Teplow, D. B., Miller, C., Schenk, D., Johnston J., et al. (1994) Excessive production of amyloid β-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation.Proc. Natl. Acad. Sci. USA 91, 11993–11997.

    PubMed  CAS  Google Scholar 

  105. Johnston J. A., Cowburn, R. F., Norgren, S., Wiehager, B., Venizelos, N., Winblad, R., et al. (1994) Increased β-amyloid release and levels of amyloid precursor protein (APP) in fibroblast cell lines form family members with the Swedish Alzheimer's disease APP690/671 mutation.FEBS Lett. 354, 274–278.

    PubMed  CAS  Google Scholar 

  106. Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., et al. (1996) Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 APP mutations linked to familial Alzheimer's disease.Nature Med. 2, 864–870.

    PubMed  CAS  Google Scholar 

  107. Querfurth, H. W., Wijsman, E. M., St. George-Hsylop, P. H., and Selkoe, D. J. (1995) βAPP mRNA transcription is increased in cultured fibroblasts from the familial Alzheimer's disease-1 family.Mol. Brain Res. 28, 319–337.

    PubMed  CAS  Google Scholar 

  108. Okada, A., Urakami, K., Takahashi, K., Ohno, K., Sato, K., Endo, H. (1994) Expression of amyloid beta-protein precursor mRNAs in cultured skin fibroblasts taken from patients with dementia of the Alzheimer type.Dementia 5, 55–56.

    PubMed  CAS  Google Scholar 

  109. Li, J. C., and Kaminskas, E. (1985) Deficient repair of DNA lesions in Alzheimer's disease fibroblasts.Biochem. Biophys. Res. Com. 129, 733–738.

    PubMed  CAS  Google Scholar 

  110. Scudiero, D. A., Polinsky, R. J., Brumback, R. A., Tarone, R. E., Nee, L. E., and Robbins, J. H. (1986) Alzheimer disease fibroblasts are hypersensitive to the lethal effects of a DNA-damaging chemical.Mutation Res. 159, 125–131.

    PubMed  CAS  Google Scholar 

  111. Bradley, W. G., Polinsky, R. J., Pendlebury, W. W., Jones, S. K., Nee, L. E., Bartlett, J. D., et al. (1989) DNA repair deficiency for alkylation damage in cells from Alzheimer's disease patients, inAlzheimer's Disease and Related Disorders, Liss, New York, pp. 715–732.

    Google Scholar 

  112. Kruk, P. A., Rampino, N. J., and Bohr, V. A. (1995) DNA damage and repair in telomeres: relation to aging.Proc. Natl. Acad. Sci. USA 92, 258–262.

    PubMed  CAS  Google Scholar 

  113. An, S., and Wu, J. M. (1993) Studies of biochemical changes in cultured skin fibroblasts derived from sporadic and familial Alzheimer's disease individuals: qualitative and quantitative changes in double-stranded DNA-stimulated phosphorylation of endogenous nucleoproteins.Biochem. Mol. Biol. Int. 31, 279–290.

    PubMed  CAS  Google Scholar 

  114. An, S., Khanna, K. K., and Wu, J. M. (1994) mRNA levels and methylation patterns of the 2–5A synthetase gene in control and Alzheimer's disease fibroblasts.Biochem. Mol. Biol. Int. 33, 835–840.

    PubMed  CAS  Google Scholar 

  115. Ueda, K., Cole, G., Sundsmo, M., Katzman, R., and Saitoh, T. (1989) Decreased adhesiveness of Alzheimer's disease fibroblasts: is amyloid β-protein precursor involved?Ann. Neurol. 25, 246–251.

    PubMed  CAS  Google Scholar 

  116. Takeda, M., Tanaka, M., Kudo, T., Nakamura, Y., Tada, K., Nishimura, T. (1990) Changes in adhesion efficiency and vimentin distribution of fibroblasts from familial Alzheimer's disease patients.Acta. Neurol. Scand. 82, 238–244.

    PubMed  CAS  Google Scholar 

  117. Takeda, M., Tatebayashi, Y., and Nishimura, T. (1992) Change in the cytoskeletal system in fibroblasts from patients with familial Alzheimer's disease.Prog. Neuro-Psychopharmacol. Biol.-Psychiat. 16, 317–328.

    CAS  Google Scholar 

  118. Takeda, M., Nishimura, T., Haraguchi, S., Tatebayashi, Y., Tanaka, T., Tanimukai, S., Tada, K. (1991) Study of cytoskeletal proteins in fibroblasts cultured from familial Alzheimer's disease.Acta Neurol. Scand. 84, 416–420.

    PubMed  CAS  Google Scholar 

  119. Peterson, C., Vanderklish, P., Seubert, P., Cotman, C., and Lynch, G. (1991) Increased spectrin proteolysis in fibroblasts from aged and Alzheimer donors.Neurosci. Letters 121, 239–243.

    CAS  Google Scholar 

  120. Paoletti, F., Mocali, A., Marchi, M., Sorbi, S., and Piacentini, S. (1990) Occurrence of transkelotase abnormalities in extracts of foreskin fibroblasts from patients with Alzheimer's disease.Biochem. Biophys. Res. Comm. 172, 396–401.

    PubMed  CAS  Google Scholar 

  121. Paoletti F., and Mocali, A. (1991) Enhanced proteolytic activities in cultured fibroblasts of Alzheimer patients are revealed by peculiar transkelotase alterations.J. Neurol. Sci. 105, 211–216.

    PubMed  CAS  Google Scholar 

  122. Tombaccini, D., Mocali, A., and Paoletti, F. (1994) Characteristic transkelotase alterations in dermal fibroblasts of Alzheimer patients are modulated by culture conditions.Exp. Mol. Path. 60, 140–146.

    CAS  Google Scholar 

  123. Paoletti, F., and Tombaccini, D. (1998) Proteolytic imbalance in Alzheimer fibroblasts as potential pathological trait of disease.FASEB J. 12, 925–927.

    PubMed  CAS  Google Scholar 

  124. Sorbi, S., Mortilla, M., Piacentini, S., Tonini, S., and Amaducci, L. (1990) Altered hexokinase activity in skin cultured fibroblasts and leukocytes from Alzheimer's disease patients.Neurosci. Lett. 117, 165–168.

    PubMed  CAS  Google Scholar 

  125. Gibson, G. E., Sheu, K-F. R., and Blass, J. P. (1988) Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer's disease.Arch. Neurol. 45, 836–840.

    PubMed  CAS  Google Scholar 

  126. Blass, J. P. (1994) The cultured fibroblast model.J. Neural. Transm. Suppl. 44, 87–95.

    PubMed  CAS  Google Scholar 

  127. Pascale, A., Bhagavan, S., Neve, R. L., McPhie, D. L., Nelson, T. J., and Etcheberrigaray, R. (1999) Enhanced bradykinin (BK)- induced Ca2+ responsiveness in PC12 cells expressing the C-100 fragment of APP.Mol. Brain Res. 72, 205–213.

    PubMed  CAS  Google Scholar 

  128. Ikon, D. L., Naito, S., Kubota, M., Chen, C., Bank, B., Smallwood, J., Gallant, P., and Rasmussen, H. (1988) Regulation of Hermissenda K+ channels by cytoplasmic and membrane-associated C-kinase.J. Neurochem. 51, 903–917.

    Google Scholar 

  129. Etcheberrigaray, R., Matzel, D. L., Lederhendler, I., and Alkon, D. L. (1992) Classical conditioning and protein kinase C activation regulate the same single potassium channel inHermissenda.PNAS 89, 7184–7188.

    PubMed  CAS  Google Scholar 

  130. Covarrubias, M., Wei, A., Salkoff, L., and Vyas, T. B. (1994) Elimination of rapid potassium channel inactivation by phosphorylation of the inactivation gate.Neuron 13, 1403–1412.

    PubMed  CAS  Google Scholar 

  131. Hu, K., Duan, D., Li, G. R., and Nattel, S. (1996) Protein Kinase C activates ATP-sensitive K+ current in human rabbit ventricular myocytes.Circ. Res. 78, 492–498.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Etcheberrigaray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etcheberrigaray, R., Bhagavan, S. Ionic and signal transduction alterations in Alzheimer’s disease. Mol Neurobiol 20, 93–109 (1999). https://doi.org/10.1007/BF02742436

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02742436

Index Entries

Navigation