Skip to main content
Log in

Acetylcholine release and the cholinergic genomic locus

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Choline acetyltransferase and vesicular acetylcholine-transporter genes are adjacent and coregulated. They define a cholinergic locus that can be turned on under the control of several factors, including the neurotrophins and the cytokines. Hirschprung's disease, or congenital megacolon, is characterized by agenesis of intramural cholinergic ganglia in the colorectal region. It results from mutations of the RET (GDNF-activated) and the endothelin-receptor genes, causing a disregulation in the cholinergic locus.

Using cultured cells, it was shown that the cholinergic locus and the proteins involved in acetylcholine (ACh) release can be expressed separately ACh release could be demonstrated by means of biochemical and electrophysiological assays even in noncholinergic cells following preloading with the transmitter. Some noncholinergic or even nonneuronal cell types were found to be capable of releasing ACh quanta. In contrast, other cells were incompetent for ACh release. Among them, neuroblastoma N18TG-2 cells were rendered release-competent by transfection with the mediatophore gene. Mediatophore is an ACh-translocating protein that has been purified from plasma membranes ofTorpedo nerve terminal; it confers a specificity for ACh to the release process.

The mediatophores are activated by Ca2+; but with a slower time course, they can be desensitized by Ca2+. A strictly regulated calcium microdomain controls the synchronized release of ACh quanta at the active zone. In addition to ACh and ATP, synaptic vesicles have an ATP-dependent Ca2+ uptake system; they transiently accumulate Ca2+ after a brief period of stimulation. Those vesicles that are docked close to Ca2+ channels are therefore in the best position to control the profile and dynamics of the Ca2+ microdomains. Thus, vesicles and their whole set of associated proteins (SNAREs and others) are essential for the regulation of the release mechanism in which the mediatophore seems to play a key role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alder J., Xie X., Valtorta F., Greengard P., and Poo M. M. (1992) Antibodies of synaptophysin interfere with transmitter secretion at neuromuscular synapses.Neuron 9, 759–768.

    PubMed  CAS  Google Scholar 

  • Alder J., Lu B., Valtorta F., Greengard P., and Poo M. M. (1992) Calcium-dependent transmitter secretion reconstituted inXenopus oocytes: requirement for synaptophysin.Science 257, 657–661.

    PubMed  CAS  Google Scholar 

  • Alfonso A., Grundahl K., Duerr J. S., Han H. P., and Rand J. B. (1993) TheCaenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter.Science 261, 617–619.

    PubMed  CAS  Google Scholar 

  • Angrist M., Kauffman E., Slaugenhaupt S. A., Matise T. C., Puffenberger E. G., Washington S. S., Lipson A., Cass D. T., Reyna T., Weeks D. E., et al. (1993) A gene for Hirschsprung disease (megacolon) in the pericentromeric region of human chromosome 10.Nat. Genet. 4, 351–356.

    PubMed  CAS  Google Scholar 

  • Béjanin S., Habert E., Berrard S., Edwards J. B., Loeffler J. P., and Mallet J. (1992) Promoter elements of the rat choline acetyltransferase gene allowing nerve growth factor inducibility in transfected primary cultured cells.J. Neurochem. 58, 1580–1583.

    PubMed  Google Scholar 

  • Béjanin S., Cervini R., Mallet J., and Berrard S. (1994) A unique gene organization for two cholinergic markers, choline acetyltransferase and a putative vesicular transporter of acetylcholine.J. Biol. Chem. 269, 21,944–21,947.

    Google Scholar 

  • Bahr B. A. and Parsons S. M. (1986a) Acetylcholine transport and drug inhibition kinetics inTorpedo synaptic vesicles.J. Neurochem. 46, 1214–1218.

    PubMed  CAS  Google Scholar 

  • Bahr B. A. and Parsons S. M. (1986b) Demonstration of a receptor inTorpedo synaptic vesicles for the acetylcholine storage blocker L-trans-2-(phenyl [3,43H] piperidino) cyclohexanol.Proc. Natl. Acad. Sci. USA 83, 2267–2270.

    PubMed  CAS  Google Scholar 

  • Barnard E. A. and Bilbe G. (1986) Functional expression in theXenopus oocyte of the mRNAs for receptors and ion channels, inNeurochemistry, A Practical Approach (Turner, A. J. and Bachelard H. S., eds.) IRL Press, Oxford, pp. 243–270.

    Google Scholar 

  • Bazan J. F. (1991) Neuropoietic cytokines in the hematopoietic fold.Neuron. 7, 197–208.

    PubMed  CAS  Google Scholar 

  • Berrard S., Varoqui H., Cervini R., Israël M., Mallet J., and Diebler M.-F. (1995) Coregulation of two embedded gene products, choline acetyltransferase and the vesicular acetylcholine transporter.J. Neurochem. 65, 939–942.

    PubMed  CAS  Google Scholar 

  • Berse B. and Blusztajn J. K. (1995) Coordinated up-regulation of choline acetyltransferase and vesicular acetylcholine transporter gene expression by the retinoic acid receptor alpha, cAMP, and leukemia inhibitory factor/ciliary neurotrophic factor signaling pathways in a murine septal cell line.J. Biol. Chem. 270, 22,101–22,104.

    CAS  Google Scholar 

  • Betz W. J. and Bewick G. S. (1993) Optical monitoring of transmitter release and synaptic vesicle recycling at the frog neuromuscular junction.J. Physiol. Lond. 460, 287–309.

    PubMed  CAS  Google Scholar 

  • Birman S., Israël M., Lesbats B., and Morel N. (1986) Solubilization and partial purification of a presynaptic membrane protein ensuring calcium-dependent acetylcholine release from proteoliposomes.J. Neurochem. 47, 433–444.

    PubMed  CAS  Google Scholar 

  • Birman S., Meunier F. M., Lesbats B., LeCaer J. P., LeCaer, Rossier J. and Israël M. (1990) A 15 kD proteolipid found in mediatophore preparations fromTorpedo presents high sequence homology with the bovine chromaffin granule protonophore.FEBS Lett. 261, 303–306.

    PubMed  CAS  Google Scholar 

  • Blasi J., Chapman E. R., Link E., Binz T., Yamasaki S., De Camilli P., Sudhof T. C., Nieman H., and Jahn R. (1993) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25.Nature 365, 160–163.

    PubMed  CAS  Google Scholar 

  • Blaustein M. P., Church P. J., and Stanley E. F. (1996) Localization of ion transporters involved in calcium control in presynaptic nerve terminals.Soc. for Neurosc. Abstr. 22, 323.

    Google Scholar 

  • Blusztajn J. K., Venturini A., Jackson D. A., Lee H.J., and Wainer B. H. (1992) Acetylcholine synthesis and release is enhanced by dibutyryl cyclic AMP in a neuronal cell line derived from mouse septum.J. Neurosci. 12, 793–799.

    PubMed  CAS  Google Scholar 

  • Bommert K., Charlton M. P., DeBello W. M., Chin G. J., Betz H., and Augustine G. J. (1993) Inhibition of neurotransmitter release by C2-domain peptides implicates synaptotagmin in exocytosis.Nature 363, 163–165.

    PubMed  CAS  Google Scholar 

  • Broadie K., Prokop A., Bellen H. J., O'Kane C. J., Schulze K. L., and Sweeney S. T. (1995) Syntaxin and synaptobrevin function downstream of vesicle docking inDrosophila.Neuron 15, 663–673.

    PubMed  CAS  Google Scholar 

  • Brochier G., Gulik-Krzywicki T., Lesbats B., Dedieu J., and Israël M. (1992) Calcium-induced acetylcholine release and intramembrane particle occurrence in proteoliposomes equipped with mediatophore.Biol. Cell 74, 225–230.

    PubMed  CAS  Google Scholar 

  • Brochier G., Israël M., and Lesbats B. (1993) Immunolabelling of the presynaptic membrane ofTorpedo electric organ nerve terminals with an antiserum towards the acetylcholine releasing protein mediatophore.Biol. Cell 78, 145–154.

    PubMed  CAS  Google Scholar 

  • Buchs P. A. and Muller D. (1996) Induction of longterm potentiation is associated with major ultrastructural changes of activated synapses.Proc. Natl. Acad. Sci. USA 93, 8040–8045.

    PubMed  CAS  Google Scholar 

  • Cavalli A., Eder-Colli L., Dunant Y., Loctin F., and Morel N. (1991) Release of acetylcholineXenopus oocytes injected with nRNAs from cholinergic neurons.EMBO J. 10, 1671–1675.

    PubMed  CAS  Google Scholar 

  • Cavalli A., Dunant Y., Leroy C., Meunier F. M., Morel N., and Israël M. (1993) Antisense probes against mediatophore block transmitter release in oocytes primed with neuronal mRNAs.Eur. J. Neurosci. 5, 1539–1544.

    PubMed  CAS  Google Scholar 

  • Cervini R., Houhou L., Pradat P. F., Béjanin S., Mallet J., and Berrard S. (1995) Specific vesicular acetylcholine transporter promoters lie within the first intron of the rat choline acetyltransferase gene.J. Biol. Chem. 270, 24,654–24,657.

    CAS  Google Scholar 

  • Couteaux R. and Pécot-Dechavassine M. (1970) Vesicules synaptiques et poches au niveau des “zones actives” de la jonction neuromusculaire.C. R. Acad. Sci. Paris 271, 2346–2349.

    CAS  Google Scholar 

  • Curtis R., Scherer S. S., Somogyi R., Adryan K. M., Ip N. Y., Zhu Y., Lindsay R. M., and DiStefano P. S. (1994) Retrograde axonal transport of LIF is increased by peripheral nerve injury: correlation with increased LIF expression in distal nerve.Neuron. 12, 191–204.

    PubMed  CAS  Google Scholar 

  • DiAntonio A., Parfitt K. D., and Schwarz T. L. (1993) Synaptic transmission persists in synaptotagmin mutants of Drosophila.Cell 73, 1281–1290.

    PubMed  CAS  Google Scholar 

  • Diebler M. F. and Morot Gaudry Talarmain Y. (1989) AH5183 and cetiedil: two potent inhibitors of acetylcholine uptake into isolated synaptic vesicles fromTorpedo marmorata.J. Neurochem. 52, 813–821.

    PubMed  CAS  Google Scholar 

  • Dunant Y. and Israël M. (1995) Mediatophore and other presynaptic proteins. A cybernetic linking at the active zone.J. Physiol. Paris 89, 147–156.

    PubMed  CAS  Google Scholar 

  • Dunant Y., Gautron J., Israël M., Lesbats B., and Manaranche R. (1972) Les compartiments d'acétylcholine de l'organe électrique de la Torpille et leurs modifications par la stimulation.J. Neurochem. 19, 1987–2002.

    PubMed  CAS  Google Scholar 

  • Dunant Y., Gautron J., Israël M., Lesbats B., and Manaranche R. (1974) Evolution de la décharge de l'organe électrique de la Torpille et variations simultanées de l'acétylcholine au cours de la stimulation.J. Neurochem. 23, 635–643.

    PubMed  CAS  Google Scholar 

  • Dunant Y., Babel-Guérin E., and Droz B. (1980) Calcium metabolism and acetylcholine release at the nerve-electroplaque junction.J. Physiol. Paris 76, 471–478.

    PubMed  CAS  Google Scholar 

  • Dunant Y., Loctin F., Marsal J., Muller D., Parducz A., and Rabasseda X. (1988) Energy metabolism and quantal acetylcholine release. Effects of botulinum toxin, fluorodinitrobenzene and diamide in theTorpedo electric organ.J. Neurochem. 50, 431–439.

    PubMed  CAS  Google Scholar 

  • Edery P., Pelet A., Mulligan L. M., Abel L., Attie T., Dow E., Bonneau D., David A., Flintoff W., Jan D., et al. (1994) Long segment and short segment familial Hirschsprung's disease: variable clinical expression at the RET locus.J. Med. Genet. 31, 602–606.

    PubMed  CAS  Google Scholar 

  • Edery P., Attie T., Amiel J., Pelet A., Eng C., Hofstra R. M., Martelli H., Bidaud C., Munnich A., and Lyonnet S. (1996) Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome).Nat. Genet. 12, 442–444.

    PubMed  CAS  Google Scholar 

  • Erickson J. D., Eiden L. E., and Hoffman B. J. (1992) Expression cloning of a reserpine-sensitive vesicular monoamine transporter.Proc. Natl. Acad. Sci. USA 89, 10,993–10,997.

    CAS  Google Scholar 

  • Erickson J. D., Varoqui H., Schafer M. K., Modi W., Diebler M. F., Weihe E., Rand J., Eiden L. E., Bonner T. I., and Usdin T. B. (1994) Functional identification of a vesicular acetylcholine transporter and its expression from a “cholinergic” gene locus.J. Biol. Chem. 269, 21,929–21,932.

    CAS  Google Scholar 

  • Eshkind L. G. and Leube R. E. (1995) Mice lacking synaptophysin reproduce and form typical synaptic vesicles.Cell Tissue Res. 282, 423–433.

    PubMed  CAS  Google Scholar 

  • Evers J., Laser M., Sun Y., Xie Z., and Poo M. M. (1989) Studies of nerve-muscle interactions inXenopus cell culture: analysis of early synaptic currents.J. Neurosci. 9, 1523–1539.

    PubMed  CAS  Google Scholar 

  • Falk-Vairant J., Dunant Y., and Israël M. (1994) Quantal acetylcholine release in reconstituted systems.J. Neurochem. 63, S90.

    Google Scholar 

  • Falk-Vairant J., Israël M., Bruner J., Stinnakre J., Meunier F. M., Gaultier P., Meunier F. A., Lesbats B., Synguelakis M., Corrèges P., and Dunant, Y. (1996a) Evoked transmitter release from fibroblasts loaded with acetylcholine, enhancement by cAMP.Neuroscience 75, 353–360.

    PubMed  CAS  Google Scholar 

  • Falk-Vairant J., Meunier F. M., Lesbats B., Corrèges P., Eder-Colli L., Salem N., Synguelakis M., Dunant Y., and Israël M. (1996b) Cell lines expressing an acetylcholine release mechanism, correction of a release-deficient cell by mediatophore transfection.J. Neurosc. Res. 45, 195–201.

    CAS  Google Scholar 

  • Falk-Vairant J., Corrèges P., Eder-Colli L., Salem N., Meunier F., Lesbats B., Loctin F., Synguelakis M., Israël M., and Dunant Y. (1996c) Evoked acetylcholine release expressed by transfection of mediatophore cDNA.J. Neurochem. 66, 1322–1325.

    PubMed  CAS  Google Scholar 

  • Falk-Vairant J., Corréges P., Eder-Colli L., Salem N., Roulet E., Bloc A., Meunier F., Lesbats B., Loctin F., Synguelakis M., Israël M., and Dunant Y. (1996d) Quantal acetylcholine release induced by mediatophore transfection.Proc. Natl. Acad. Sci. USA 93, 5203–5207.

    PubMed  CAS  Google Scholar 

  • Finbow M. E., Pitts J. D., Goldstein D. J., Schlegel R., and Findlay B. C. (1991) The E5 oncoprotein target: a 16-kDa channel- forming protein with diverse functions.Molec. Carcinog. 4, 441–444.

    CAS  Google Scholar 

  • Finbow M. E., Harrison M., and Jones P. (1995) Ductin—a proton pump component, a gap junction channel and a neurotransmitter release channel.Bioessays 17, 247–255.

    PubMed  CAS  Google Scholar 

  • Galli T., McPherson P. S., and De Camilli P. (1996) The Vo sector of the VATPase, synaptobrevin, and synaptophysin are associated on synaptic vesicles in a Triton X-100-resistant, freeze-thawing sensitive, complex.J. Biol. Chem. 271, 2193–2198.

    PubMed  CAS  Google Scholar 

  • Gansel, M., Penner R., and Dreyer F. (1987) Distinct sites of action of clostridial neurotoxins revealed by double-poisoning of mouse motor nerve terminals.Pflügers Arch. 409, 533–539.

    PubMed  CAS  Google Scholar 

  • Garcia-Segura L. M., Muller D., and Dunant Y. (1986) Increase in the number of presynaptic large intramembrane particles during synaptic transmission at theTorpedo nerve-electroplaque junction.Neuroscience 19, 63–79.

    PubMed  CAS  Google Scholar 

  • Girod R., Eder-Colli L., Medilanski J., Dunant Y., Tabti N., and Poo M. M. (1992) Pulsatile release of acetylcholine by nerve terminals (synaptosomes) isolated from theTorpedo electric organ.J. Physiol. Lond. 450, 325–340.

    PubMed  CAS  Google Scholar 

  • Girod R., Corrèges P., Jacquet J., and Dunant Y. (1993) Space and time characteristics of transmitter release at the nerve-electroplaque junction of Torpedo.J. Physiol. Lond. 471, 129–157.

    PubMed  CAS  Google Scholar 

  • Gundersen C. B., Miledi R. B., and Parker I. (1984) Slowly inactivating potassium channels induced inXenopus oocytes by messenger ribonucleic acid fromTorpedo brain.J. Physiol. Lond. 353, 231–248.

    PubMed  CAS  Google Scholar 

  • Gundersen C. B., Jenden D. J., and Miledi R. B. (1985) Choline acetyltransferase and acetylcholine inXenopus oocytes injected with mRNA from the electric lobe ofTorpedo.Proc. Natl. Acad. Sci. USA 82, 608–611.

    PubMed  CAS  Google Scholar 

  • Harris A. J. and Miledi R. B. (1971) The effect of type D botulinum toxin on frog neuromuscular junctions.J. Physiol. Lond. 217, 497–515.

    PubMed  CAS  Google Scholar 

  • Henderson C. E., Phillips H. S., Pollock R. A., Davies A. M., Lemeulle C., Armanini M., Simmons L., Moffet B., Vandlen R. A., Simpson L. C., Koliastos V. E., and Rosenthal A. (1994) GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle.Science 266, 1062–1064.

    PubMed  CAS  Google Scholar 

  • Henkel A. W. and Betz W. J. (1995) Staurosporine blocks evoked release of FM1-43 but not acetylcholine from frog motor terminals.J. Neurosc. 15, 8246–8258.

    CAS  Google Scholar 

  • Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., and Evans L. (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release.J. Cell. Biol. 81, 275–300.

    PubMed  CAS  Google Scholar 

  • Horikawa H. P., Saisu H., Ishizuka T., Sekine Y., Tsugita A., Odani S., and Abe T. (1993) A complex of rab3A, SNAP-25, VAMP/synaptobrevin-2 and syntaxins in brain presynaptic terminals.FEBS Lett. 330, 236–240.

    PubMed  CAS  Google Scholar 

  • Ibanez C. F. and Persson H. (1991) Localization of sequences determining cell type specificity and NGF responsiveness in the promoter region of the rat choline acetyltransferase gene.Eur. J. Neurosci. 3, 1309–1315

    PubMed  Google Scholar 

  • Israël M. and Dunant Y. (1993) Acetylcholine release, from molecules to function.Prog. Brain Res. 98, 219–233.

    PubMed  Google Scholar 

  • Israël M. and Lesbats B. (1981) Continuous determination by a chemiluminescent method of acetylcholine release and compartmentation inTorpedo electric organ synaptosomesJ. Neurochem. 37, 1475–1483.

    PubMed  Google Scholar 

  • Israël M. and Lesbats B. (1982) Application to mammalian tissues of the chemiluminescent method for detecting acetylcholine.J. Neurochem. 39, 248–250.

    PubMed  Google Scholar 

  • Israël M., Gautron J., and Lesbats B. (1968) Isolement des vésicules synaptiques de l'organe électrique de la Torpille et localisation de l'acétylcholine à leur niveau.C.R. Acad. Sci. Paris 266, 273–275.

    Google Scholar 

  • Israël M., Gautron J., and Lesbats B. (1970) Fractionnement de l'organe électrique de la Torpille: localisation subcellulaire de l'acétylcholine.J. Neurochem. 17, 1441–1450.

    PubMed  Google Scholar 

  • Israël M., Dunant Y., and Manaranche R. (1979) The present status of the vesicular hypothesis.Prog. Neurobiol. 13, 237–275.

    PubMed  Google Scholar 

  • Israël M., Manaranche R. F. M., Morel N., Frachon P., and Lesbats B. (1980) ATP-dependent calcium uptake by cholinergic synaptic vesicles isolated fromTorpedo electric organ.J. Membr. Biol. 54, 115–126.

    PubMed  Google Scholar 

  • Israël M., Lesbats B., and Manaranche R. (1981) ACh release from osmotically shocked synaptosomes refilled with transmitter.Nature 294, 474–475.

    PubMed  Google Scholar 

  • Israël M., Manaranche R., Morel N., Dedieu J., Gulik-Krzywicki T., and Lesbats B. (1981) Redistribution of intramembrane particles related to acetylcholine release by cholinergic synaptosomes.J. Ultrastruct. Res. 75, 162–178.

    PubMed  Google Scholar 

  • Israël M., Lesbats B., Morel N., Manaranche R., Gulik-Krzywicki T., and Dedieu J. (1984) Reconstitution of a functional synaptosomal membrane possessing the protein constituents involved in acetylcholine translocation.Proc. Natl. Acad. Sci. USA 81, 277–281.

    PubMed  Google Scholar 

  • Israël M., Morel N., Lesbats B., Birman S., and Manaranche R. (1986) Purification of a presynaptic membrane protein that mediates a calcium-dependent translocation of acetylcholine.Proc. Natl. Acad. Sci. USA 83, 9226–9230.

    PubMed  Google Scholar 

  • Israël M., Meunier F. M., Morel N., and Lesbats B. (1987) Calcium-induced desensitization of acetylcholine release from synaptosomes or proteoliposomes equipped with mediatophore, a presynaptic membrane protein.J. Neurochem. 49, 975–982.

    PubMed  Google Scholar 

  • Israël M., Lesbats B., Morel N., Manaranche R., and Le Gal la Salle G. (1988) Is the acetylcholine releasing protein mediatophore present in rat brain?FEBS Lett. 233, 421–426.

    PubMed  Google Scholar 

  • Israël M., Lesbats B., Sbia M., and Morel N. (1990) Acetylcholine translocating protein: mediatophore at rat neuromuscular synapses.J. Neurochem. 55, 1758–1762.

    PubMed  Google Scholar 

  • Israël M., Lesbats B., Synguelakis M., and Joliot A. (1994) Acetylcholine accumulation and release by hybrid NG108-15, glioma and neuroblastoma cells—Role of a 16 kDa membrane protein in release.Neurochem. Int. 25, 103–109.

    PubMed  Google Scholar 

  • Katz B. and Miledi R. B. (1977) Transmitter leakage from motor nerve endings.Proc. R. Soc. London. B. 196, 59–72.

    CAS  Google Scholar 

  • Kriebel M. E. and Gross C. E. (1974) Multimodal distribution of frog miniature endplate potentials in adult, denervated and tadpole leg muscle.J. Gen. Physiol. 64, 85–103.

    PubMed  CAS  Google Scholar 

  • Kriebel M., Llados E. F., and Matteson D. R. (1976) Spontaneous subminiature end-plate potentials in mouse diaphragm muscle: evidence for synchronous release.J. Physiol. Lond. 262, 553–581.

    PubMed  CAS  Google Scholar 

  • Leroy C. and Meunier F. M. (1995) Differential targeting to the plasma membrane of the Torpedo 15-kDa proteolipid expressed in oocytes.J. Neurochem. 65, 1789–1797.

    PubMed  CAS  Google Scholar 

  • Leveque C., Hoshino T., David P., Shoji-Kasai Y., Leys K., Omori A., Lang B., ElFar O., Sato K., Martin Moutot N. et al. (1992) The synaptic vesicle protein synaptotagmin associates with calcium channels and is a putative Lambert-Eaton myasthenic syndrome antigen.Proc. Natl. Acad. Sci. USA 89, 3625–3629.

    PubMed  CAS  Google Scholar 

  • Lin L. F., Doherty D. H., Lile J. D., Bektesh S., and Collins F. (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons.Science 260, 1130–1132.

    PubMed  CAS  Google Scholar 

  • Littleton J. T. and Bellen H. J. (1995) Synaptotagmin controls and modulates synaptic-vesicle fusion in a Ca(2+)-dependent manner.Trends Neurosci. 18, 177–183.

    PubMed  CAS  Google Scholar 

  • Liu Y., Peter D., Roghani A., Schuldiner S., Prive G. G., Eisenberg D., Brecha N., and Edwards R. H. (1992) A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter.Cell 70, 539–551.

    PubMed  CAS  Google Scholar 

  • Lledo P. M., Vernier P., Vincent J. D., Mason W. T., and Zorec R. (1993) Inhibition of Rab3B expression attenuates Ca(2+)-dependent exocytosis in rat anterior pituitary cells.Nature 364, 540–544.

    PubMed  CAS  Google Scholar 

  • Llinas R., Sugimori M., and Silver R. B. (1992) Microdomains of high calcium concentration in a presynaptic terminal.Science USA 256, 677–679.

    CAS  Google Scholar 

  • Lyonnet S., Bolino A., Pelet A., Abel L., Nihoul Fekete C., Briard M. L., Mok Siu V., Kaariainen H., martucciello G., Lerone M., et al. (1993) A gene for Hirschsprung disease maps to the proximal long arm of chromosome 10.Nat. Genet. 4, 346–350.

    PubMed  CAS  Google Scholar 

  • McMahon H. T., Bolshakov V. Y., Janz R., Hammer R. E., Siegelbaum S. A., and Sudhof T. C. (1996). Synaptophysin, a major synaptic vesicle protein, is not essential for neurotransmitter release.Proc. Natl. Acad. Sci. USA 93, 4760–4764.

    PubMed  CAS  Google Scholar 

  • Meyer E. M. and Cooper J. R. (1983) High affinity choline uptake and calcium-dependent acetyl-choline release in proteoliposomes derived from rat cortical synaptosomes.J. Neurosci. 3, 987–994.

    PubMed  CAS  Google Scholar 

  • Michaelson D. M., Ophir I., and Angel I. (1980) ATP-stimulated Ca2+ transport into cholinergicTorpedo synaptic vesicles.J. Neurochem. 35, 116–124.

    PubMed  CAS  Google Scholar 

  • Misawa H., Ishii K., and Deguchi T. (1992) Gene expression of mouse choline acetyltransferase. Alternative splicing and identification of a highly active promoter region.J. Biol. Chem. 267, 20,392–20,399.

    CAS  Google Scholar 

  • Misawa H., Takahashi R., and Deguchi T. (1995) Coordinate expression of vesicular acetylcholine transporter and choline acetyltransferase in sympathetic superior cervical neurones.NeuroReport 6, 965–968.

    PubMed  CAS  Google Scholar 

  • Molgo J., Comella J. X., Angaut Petti D., Pecot Dechavassine M., Tabti N., Faille L., Mallart A., and Thesleff S. (1990) Presynaptic actions of botulinal neurotoxins at vertebrate neuromuscular junctions.J. Physiol. Paris 84, 152–166.

    PubMed  CAS  Google Scholar 

  • Moore M. W., Klein R. D., Farinas I., Sauer H., Armanini M., Phillips H., Reichardt L. F., Ryan A. M., Carver Moore K., and Rosenthal A. (1996) Renal and neuronal abnormalities in mice lacking GDNF.Nature 382, 76–79.

    PubMed  CAS  Google Scholar 

  • Morel N., Israël M., Manaranche R., and Mastour-Frachon P. (1977) Isolation of pure cholinergic nerve endings fromTorpedo electric organ. Evaluation of their metabolic properties.J. Cell Biol. 75, 43–55.

    PubMed  CAS  Google Scholar 

  • Morel N., Israël M., and Manaranche R. (1978) Determination of Ach concentration inTorpedo synaptosomes.J. Neurochem. 30, 1553–1557.

    PubMed  CAS  Google Scholar 

  • Morimoto T., Popov S., Buckley K. M., and Poo M. M. (1995) Calcium-dependent transmitter secretion from fibroblasts: modulation by synaptotagmin I.Neuron. 15, 689–696.

    PubMed  CAS  Google Scholar 

  • Muller D. and Dunant Y. (1987) Spontaneous quantal and subquantal transmitter release at theTorpedo nerve-electroplaque junction.Neuroscience 20, 911–921.

    PubMed  CAS  Google Scholar 

  • Muller D., Garcia-Segura L. M., Parducz A., and Dunant Y. (1987) Brief occurrence of a population of large intramembrane particles in the presynaptic membrane during transmission of a nerve impulse.Proc. Natl. Acad. Sci. USA 84, 590–594.

    PubMed  CAS  Google Scholar 

  • Mulligan L. M., Kwok J. B., Healey C. S., Elsdon M. J., Eng C., Gardner E., Love D. R., Mole S. E., Moore J. K., Papi L., et al. (1993) Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A.Nature 363, 458–460.

    PubMed  CAS  Google Scholar 

  • Nelson N. (1992) Organellar proton-ATPases.Curr. Opin. Cell. Biol. 4, 654–660.

    PubMed  CAS  Google Scholar 

  • Nonet M. L., Grundahl K., Meyer B. J., and Rand J. B. (1993) Synaptic function is impaired but not eliminated inC elegans mutants lacking synaptotagmin.Cell 73, 291–1305.

    Google Scholar 

  • Oppenheim R. W., Houenou L. J., Johnson J. E., Lin L. F., Li L., Lo A. C., Newsome A. L., Prevette D. M., and Wang S. (1995) Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF.Nature 373, 344–346.

    PubMed  CAS  Google Scholar 

  • Parducz A., Toldi J., Joo F., Siklos L., and Wolff J. R. (1987) Transient increase of calcium in pre- and postsynaptic organelles of rat superior cervical ganglion after tetanizing stimulation.Neuroscience 23, 1057–1061.

    PubMed  CAS  Google Scholar 

  • Parducz A. and Dunant Y. (1993) Transient increase in calcium in synaptic vesicles after stimulation.Neuroscience 52, 27–33.

    PubMed  CAS  Google Scholar 

  • Parducz A., Loctin F., Babel-Guérin E., and Dunant Y. (1994) Exo-endocycytotic images following tetanic stimulation at a cholinergic synapse A role in calcium extrusion?.Neuroscience 62, 93–103.

    PubMed  CAS  Google Scholar 

  • Parducz A., Corrèges P., Sors P., and Dunant Y. (1997) Zinc blocks acetylcholine release but not vesicle fusion at theTorpedo nerve-electroplate junction.Eur. J. Neurosci. 9, 732–738.

    PubMed  CAS  Google Scholar 

  • Pasini B., Borrello M. G., Greco A., Bongarzone I., Luo Y., Mondellini P., Alberti L., Miranda C., Arighi E., Bocciardi R., et al. (1995) Loss of function effect of RET mutations causing Hirschsprung disease.Nat. Genet. 10, 35–40.

    PubMed  CAS  Google Scholar 

  • Pichel J. G., Shen L., Sheng H. Z., Granholm A. C., Drago J., Grinberg A., Lee E. J., Huang S. P., Saama M., Hoffer B. J., Sariola H., and Westphal H. (1996) Defects in enteric innervation and kidney development in mice lacking GDNF.Nature 382, 73–76.

    PubMed  CAS  Google Scholar 

  • Rothman J. E. (1994) Mechanisms of intracellular protein transport.Nature 372, 55–63.

    PubMed  CAS  Google Scholar 

  • Sagot Y., Tan S. A. Hammang J. P., Aebischer P., and Kato A. C. (1996) GDNF slows loss of motoneurons but not axonal degeneration or premature death of pmn/pmn mice.J. Neurosci. 16, 2335–2341.

    PubMed  CAS  Google Scholar 

  • Salomon R., Attie T., Pelet A., Bidaud C., Eng C., Amiel J., Samacki S., Goulet O., Ricour C., Nihoul Fekete C., Munnich A., and Lyonnet S. (1996) Germline mutations of the RET ligand GDNF are not sufficient to cause Hirschsprung disease.Nat. Genet. 14, 345–347.

    PubMed  CAS  Google Scholar 

  • Sanchez M. P., Silos Santiago I., Frisen J., He B., Lira S. A., and Barbacid M. (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF.Nature 382, 70–73.

    PubMed  CAS  Google Scholar 

  • Schiavo G., Benfenati F., Poulain B., Rossetto O., Polverino de Laureto P., DasGupta B. R., and Montecucco C. (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin.Nature 359, 832–835.

    PubMed  CAS  Google Scholar 

  • Schuchardt A., D'Agati V., Larsson Blomberg L., Costantini F., and Pachnis V. (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret.Nature 367, 380–383.

    PubMed  CAS  Google Scholar 

  • Schuldiner S. (1994) A molecular glimpse of vesicular monoamine transporters.J. Neurochem. 62, 2067–2078.

    PubMed  CAS  Google Scholar 

  • Shiff G., Synguelakis M., and Morel N. (1996) Association of syntaxin with SNAP 25 and VAMP (synaptobrevin) inTorpedo synapto-somes.Neurochem. Int. 29, 659–667.

    PubMed  CAS  Google Scholar 

  • Siebert A., Lottspeich F., Nelson N., and Betz H. (1994) Purification of the synaptic vesicle-binding protein physophilin; identification as the 39-kDa subunit of the vesicular H+ATPase.J. Biol. Chem. 269, 28,329–28,334.

    CAS  Google Scholar 

  • Sollner T. and Rothman J. E. (1994) Neurotransmission harnessing fusion machinery at the synapse.Trends Neurosci. 17, 344–348.

    PubMed  CAS  Google Scholar 

  • Sollner T., Bennett M. K., Whiteheart S. W., Scheller R. H., and Rothman J. E. (1993) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion.Cell 75, 409–418.

    PubMed  CAS  Google Scholar 

  • Südhof T. C. (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions.Nature 375, 645–653.

    PubMed  Google Scholar 

  • Sweeney S. T., Broadie K., Keane J., Niemann H., and O'Kane C. J. (1995) Targeted expression of tetanus toxin light chain inDrosophila specifically eliminates synaptic transmission and causes behavioral defects.Neuron 14, 341–351.

    PubMed  CAS  Google Scholar 

  • Thesleff S., Molgo J., and Lundh H. (1983) Botulinum toxin and 4-aminoquinoline induce a similar abnormal type of spontaneous transmitter release at the rat neuromuscular junction.Brain Res. 264, 89–97.

    PubMed  CAS  Google Scholar 

  • Thomas L. and Betz H. (1990) Synaptophysin binds to physophilin, a putative synaptic plasma membrane protein.J. Cell Biol. 111, 2041–2052.

    PubMed  CAS  Google Scholar 

  • Tori Tarelli F., Bossi M., Fesce R., Greengard P., and Valtorta F. (1992) Synapsin I partially dissociates from synaptic vesicles during exocytosis induced by electrical stimulation.Neuron. 9, 1143–1153.

    Google Scholar 

  • Treanor J. J., Goodman L., Sauvage de F., Stone D. M., Poulsen K. T., Beck C. D., Gray C., Armanini M. P., Pollock R. A., Hefti F., Phillips H. S., Goddard A., Moore M. W., Buj Bello A., Davies A. M., Asai N., Takahashi M., Vandlen R., Henderson C. E., and Rosenthal A. (1996) Characterization of a multicomponent receptor for GDNF.Nature 382, 80–83.

    PubMed  CAS  Google Scholar 

  • Trupp M., Arenas E., Fainzilber M., Nilsson A. S., Sieber B. A., Grigoriou M., Kilkenny C., Salazar Grueso E., Pachnis V., Arumae U., et al. (1996) Functional receptor for GDNF encoded by the c-ret proto-oncogene.Nature 381, 785–788.

    PubMed  CAS  Google Scholar 

  • Varoqui H. and Erickson J. D. (1996) Active transport of acetylcholine by the human vesicular acetylcholine transporter.J. Biol. Chem. 271, 27,229–27,232.

    CAS  Google Scholar 

  • Varoqui H., Diebler M., Meunier F., Rand J. B., Usdin T. B., Bonner T. I., Eiden L. E., and Erickson J. D. (1994) Cloning and expression of the vesamicol binding protein from the marine rayTorpedo. Homology with the putative acetylcholine transporter UNC-17 fromCaenorhabditis elegans.FEBS Lett. 342, 97–102.

    PubMed  CAS  Google Scholar 

  • Varoqui H., Meunier F. M., Meunier F. A., Molgo J., Berrard S., Cervini R., Mallet J., Israël M., and Diebler M. F. (1996) Expression of the vesicular acetylcholine transporter in mammalian cells.Prog. Brain Res. 109, 83–95.

    PubMed  CAS  Google Scholar 

  • Whittaker V. P., Essman W. B., and Dowe G. H. C. (1972) The isolation of pure cholinergic synaptic vesicles from the electric organs of elasmobranch fish of the family Torpidinae.Biochem. J. 128, 833–846.

    PubMed  CAS  Google Scholar 

  • Wu D. and Hersh L. B. (1994) Choline acetyltransferase: celebrating its fiftieth year.J. Neurochem. 62, 1653–1663.

    PubMed  CAS  Google Scholar 

  • Yamamori T. K., Fukuda R., Aebersold S., Korsching M., Fann J., and Patterson P. H. (1989) The cholinergic neuronal differentiation factor from heart cells is identical to leukemia inhibitory factor.Science 246, 1412–1416.

    PubMed  CAS  Google Scholar 

  • Zhong Z. G., Misawa H., Furuya S., Kimura Y., Noda M., Yokoyama S., and Higashida H. (1995a) Overexpression of choline acetyltransferase reconstitutes discrete acetylcholine release in some but not all synapse formation-defective neuroblastoma cells.J. Physiol. Paris 89, 137–145.

    PubMed  CAS  Google Scholar 

  • Zhong Z. G., Kimura Y., Noda M., Misawa H., and Higashida H. (1995b) Discrete acetylcholine release from neuroblastoma or hybrid cells overexpressing choline acetyltransferase into the neuromuscular synaptic cleft.Neurosci. Res. 22, 81–88.

    PubMed  CAS  Google Scholar 

  • Zimmermann H. and Denston C. R. (1977) Recycling of synaptic vesicles in the cholinergic synapses of theTorpedo electric organ during induced transmitter release.Neuroscience 2, 695–714.

    Google Scholar 

  • Zurn A. D., Baetge E. E., Hammang J. P., Tan S. A., and Aebischer P. (1994) Glial cell line-derived neurotrophic factor (GDNF), a new neurotrophic factor for motoneurones.NeuroReport 6, 113–118.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Israël, M., Dunant, Y. Acetylcholine release and the cholinergic genomic locus. Mol Neurobiol 16, 1–20 (1998). https://doi.org/10.1007/BF02740600

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02740600

Index Entries

Navigation