Skip to main content
Log in

Methods to reduce non-linear mechanical systems for instability computation

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

Non-linear dynamical structures depending on control parameters are encountered in many areas of science and engineering. In the study of non-linear dynamical systems depending on a given control parameter, the stability analysis and the associated non-linear behaviour in a near-critical steady-state equilibrium point are two of the most important points; they make it possible to validate and characterize the non-linear structures. Stability is investigated by determining eigenvalues of the linearized perturbation equations about each steady-state operating point, or by calculating the Jacobian of the system at the equilibrium points. While the conditions and the values of the parameters which cause instability can be investigated by using linearized equations of motion studies of the non-linear behaviour of vibration problems, on the other hand, require the complete non-linear expressions of systems. Due to the complexity of non-linear systems and to save time, simplifications and reductions in the mathematical complexity of the non-linear equations are usually required. The principal idea for these non-linear methods is to reduce the order of the system and eliminate as many non-linearities as possible in the system of equations.

In this paper, a study devoted to evaluating the instability phenomena in non-linear models is presented. It outlines stability analysis and gives a non-linear strategy by constructing a reduced order model and simplifying the non-linearities, based on three non-linear methods: the centre manifold concept, the rational approximants and the Alternating Frequency/Time domain method. The computational procedures to determine the reduced and simplified system via the centre manifold approach and the fractional approximants, as well as the approximation of the responses as a Fourier series via the harmonic balance method, are presented and discussed. These non-linear methods for calculating the dynamical behaviour of non-linear systems with several degrees-of-freedom and non-linearities are tested in the case of mechanical systems with many degrees-of-freedom possessing polynomial non-linearities. Results obtained are compared with those estimated by a classical Runge-Kutta integration procedure.

Moreover, an extension of the centre manifold approach using rational approximants is proposed and used to explore the dynamics of non-linear systems, by extending the domain of convergence of the non-linear reduced system and evaluating its performance and suitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andronov A.A. and Chaikin S.E. (1949).Theory of Oscillations. Princeton University Press, Princeton N.J.

    Google Scholar 

  2. Arnold V.I. (1978).Mathematical Methods of Classical Mechanics. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  3. Baker G.A. and Graves-Morris P. (1996).Padé Approximants. Cambridge University Press.

  4. Barnejee A.K. (1968). Influence of Kinetic Friction on the Critical Velocity of Stick-slip Motion.Wear,12, 107–116.

    Google Scholar 

  5. Bendat J.S. and Piersol A.G. (1982). Spectral Analysis of Non-Linear Systems Involving Square-Low Operations.Journal of Sound and Vibration,81, 199–213.

    MATH  Google Scholar 

  6. Bi Q. and Yu P. (1998). Computation of Normal Forms of Differential Equations Associated with Non-Semisimple Zero Eigenvalues.International Journal of Bifurcations and Chaos,12, 279–319.

    Google Scholar 

  7. Birkhoff G.D. (1927).Dynamical Systems, A.M.S. Publications, Providence.

    MATH  Google Scholar 

  8. Birkhoff G.D. (1932).Sur l'Existence de Régions d'Instabilité en Dynamique, Vol.2, Ann. Inst. H. Poincaré.

  9. Black R.J. (1995). Realistic Evaluation of Airplane Brake Vibration by Laboratory Test and Analyses.ASME Design Engineering Technical Conferences,3, 1197–1207.

    Google Scholar 

  10. Black R.J. (1995). Self Excited Multi-Mode Vibrations of Aircraft Brakes with Nonlinear Negative Damping.ASME Design Engineering Technical Conferences,3, 1241–1245.

    Google Scholar 

  11. Black R.J. (1995). Self Excited Multi-Mode Vibrations of Aircraft Brakes with Nonlinear Negative Damping.ASME Design Engineering Technical Conferences,3, 1241–1245.

    Google Scholar 

  12. Blair K.B., Krousgrill C.M. and Farris T.N. (1997). Harmonic Balance and Continuation Techniques in the Dynamic Analysis of Duffing's Equation.Journal of Sound and Vibration,202(5), 717–731.

    MathSciNet  Google Scholar 

  13. Blaquire A. (1966).Nonlinear System Analysis. Academic Press, New-York, London.

    Google Scholar 

  14. Bogoliubov N. and Mitropolski A. (1961).Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon and Breach.

  15. Boivin N., Shaw S.W. and Pierre C. (1995). Non-linear Modal Analysis of Structural Systems Featuring Internal Resonances.Journal of Sound and Vibration,182(2), 336–341.

    Google Scholar 

  16. Bowden F.P. and Tabor D. (1950).The Friction and Lubrication of Solids. Calrendon Press, Oxford.

    Google Scholar 

  17. Bowden F.P. and Tabor D. (1964).The Friction and Lubrication of Solids—Part II. Calrendon Press, Oxford.

    Google Scholar 

  18. Brezinski C. (1980).Padé Type Approximation and General Orthogonal Polynomials, Vol.50, Birkhauser-Verlag.

  19. Brezinski C. (1983). Extrapolation Algorithms and Padé Approximations: a Historical Survey.Applied numerical mathematics,20, 299–318.

    MathSciNet  Google Scholar 

  20. Brezinski C. (1990).History of Continued Fractions and Padé Approximant. Springer, Berlin.

    Google Scholar 

  21. Brezinski C. (1994). An Introduction to Padé Approximations.in Curves and Surfaces in Geometric design,1, 59–65.

    MathSciNet  Google Scholar 

  22. Brujno A.D. (1971). Transactions of the Moscow Mathematical Society.Analytical forms of differential equations,25, 132–198.

    Google Scholar 

  23. Brujno A.D. (1972). Transactions of the Moscow Mathematical Society.Analytical forms of differential equations,2.

  24. Burton T.D. and Rahman Z. (1986). On the Multi-scale Analysis of Strongly Nonlinear Forced Oscillators.International Journal of Non-Linear Mechanics 21, 135–146.

    MATH  MathSciNet  Google Scholar 

  25. Cameron T.M. and Griffin J.H. (1989). An Alternating Frequency Time Domain Method for Calculating the Steady State Response of Nonlinear Dynamic.Journal of Applied Mechanics,56, 149–154.

    MATH  MathSciNet  Google Scholar 

  26. Cardona A., Coune T., Lerusse A. and Géradin M. (1991). A Multi-Harmonic Method for Nonlinear Vibration Analysis.International Journal of Numerical Methods in Engineering,37, 1593–1608.

    Google Scholar 

  27. Cardona A., Lerusse A. and Géradin M. (1998). Fast Fourier Nonlinear Vibration Analysis.Computational Mechanics,22, 128–142.

    MATH  Google Scholar 

  28. Carr J. (1981).Application of Center Manifold. Spriner-Verlag, New-York.

    Google Scholar 

  29. Caughey T.K. (1963). Equivalent Linearization Techniques.The Journal of the Acousitcal Society of America,35, 1706–1711.

    MathSciNet  Google Scholar 

  30. Cesari L. (1964) Functional Analysis and Galerkin's Method.Michigan MAth.,11, 385–414.

    MATH  MathSciNet  Google Scholar 

  31. Chambrette P. (1991).Stabilité des Systèmes Dynamiques avec Frottement sec: Application au Crissement des Freins à Disque. Ecole Centrale de Lyon: Student Press. Thèse de Doctorat.

  32. Chang C.F. (1995). The Dynamic Finite Element Modeling of Aircraft Landing System.ASME Design Engineering Technical Conferences,3, 1217–1226

    Google Scholar 

  33. Cheung Y.K., Chen S.H. and Lau S.L. (1990). Application of the Incremental Harmonic Balance Method to Cubic Non-Linearity Systems.Journal of Sound and Vibration,140(2), 273–286.

    MathSciNet  Google Scholar 

  34. Chow S.N., Li C.Z. and Wang D. (1994).Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  35. Cochelin B, Damil N and Potier-Ferry M. (1994). Asymptotic Numerical Method and Padé Approximants for Non-Linear Elastic Structures.International Journal for Numerical Methods in Engineering,37, 1187–1213.

    MATH  MathSciNet  Google Scholar 

  36. Coyette J.P., Lecomte C., Migeot J.L., Blanche J., Rochette M. and Mirkovic G. (1999). Calculation of Vibro-Acoustic Frequency Response Functions Using a Single Frequency Boundary Element Solution and a Padé Expansion.Journal of the European Acoustics Association,85 (3), 7–12.

    Google Scholar 

  37. Craig R. and Bampton M.C.C. (1968). Coupling of Substructures for Dynamic Analysis.AIAA Journal,7, 1313–1321.

    Google Scholar 

  38. Crolla D.A. and Lang A.M. (1991). Brake Noise and Vibration-State of Art.Tribologie-Vehicle Tribology,18, 165–174.

    Google Scholar 

  39. Cunningham W.J. (1958).Introduction to Nonlinear Analysis. McGraw-Hill Book Co., New-York.

    MATH  Google Scholar 

  40. Damil N, Potier-Ferry M, Najah A., Chari R. and Lahmam H (1999). An Iterative Method Based Upon Padé Approximants.Communications in Numerical Methods in Engineering,15, 701–708.

    MATH  MathSciNet  Google Scholar 

  41. De Montessus de Ballore R. (1902). Sur les Fractions Continues Algébriques.Bulletin Soc. Math., France,30, 28–36.

    Google Scholar 

  42. Demailly D. (2003).Etude du Comportement Non-linéaire dans le Domaine Fréquentiel. Application à la Dynamique Rotor. Ecole Centrale de Lyon: Student Press. Thèse de Doctorat.

  43. Demailly D., Thouverez F. and Jézéquel L. (2002). Unbalance Response of Rotor/Stator Systems with Nonlinear Bearings by the Time Finite Element Method.IFToMM, 6th International Conference on Rotor Dynamics, September 30–October 3, Sydney. Australia 1, 1–8.

    Google Scholar 

  44. Dimitrijevic G. (2000).Détermination des Bifurcations de Hopf et des Cycles Limites d'une Structure non Linéaire à un Ecoulement Transsonique d'un Fluide Parfait. Université Pierre et Marie Curie: Student Press. Thèse de Doctorat.

  45. Dowell E.H. (1972). Free Vibrations of an Arbitrary Structure in Terms of Component Modes.Journal of Applied Mechanics,39, 727–732.

    Google Scholar 

  46. Dowell R.M. (1980). Component Mode Analysis of Nonlinear and Nonconservative Systems.Journal of Applied Mechanics,47, 172–176.

    MATH  Google Scholar 

  47. Draux A. (1983).Polynomes Orthogonaux Formels. Applications. Lecture Notes in Mathematics, Springer, Berlin.

    MATH  Google Scholar 

  48. D'Souza A.F. and Dweib A.H. (1990). Self-Excited Vibrations Induced by Dry Friction. Part II: Stability and Limit-Cycle Analysis.Journal of Sound and Vibration,1, 177–190.

    Google Scholar 

  49. Earles S.W.E. and Badi M.N. (1984). Oscillatory Instabilities Generated in a Double-Pin and Disc Undamped System: a Mechanism of Disc-Brake Squeal.Proc. I. Mech. E. Conf. on Vibration and Noise in Motor Vehicles,1, 43–50.

    Google Scholar 

  50. Earles S.W.E. and Chambers P.W. (1987). Disque Brake Squeal Noise Generation: Predicting its Dependency on System Parameters Including Damping.Int. J. of Vehicle design,8, 538–552.

    Google Scholar 

  51. Earles S.W.E. and Lee C.K. (1976). Instabilities Arising from the Frictional Interaction of a Pin-Disc System Resulting in Noise Generation.Trans. ASME J. Engng Ind.,1, 81–86.

    Google Scholar 

  52. Earles S.W.E. and Soar G.B. (1971). Squeal Noise in Disc Brakes.Proc. I. Mech. E. Conf. on Vibration and Noise in Motor Vehicles,paper C100/71.

  53. Earles S.W.E. and Soar, G.B. (1974). A Vibrational Analysis of a Pin-Disc System with Particular Reference to Squeal Noise in Disc Brakes.Stress Analysis Group Annual Conference,1, 237–251.

    Google Scholar 

  54. Elphick C., Tirapegui E., Brachet M.E., Coullet P. and Iooss G. (1986).A Simple Global Characterisation for Normal Forms of Singular Vector Fields. Université de Nice.

  55. Emaci E., Vakakis A.F., Andrianov I.V. and Mikhlin Y. (1997). Study of Two-Dimensional Axisymmetric Breathers Using Padé Approximants.Nonlinear Dynamics,13, 327–338.

    MATH  MathSciNet  Google Scholar 

  56. Evan-Iwanowski R.M. (1976).Resonance Oscillations in Mechanical Systems. Elsevier Scientific Publishing Co., New-York.

    MATH  Google Scholar 

  57. Ewins D.J. (1984).Modal Testing: Theory and Practice. John Wiley & Sons, New-York.

    Google Scholar 

  58. Feld D.J. and Fehr D.J. (1995). Complex Eigenvalue Analysis Applied to an Aircraft Brake Vibration Problem.ASME Design Engineering Technical Conferences,3, 1135–1142.

    Google Scholar 

  59. Gao C., Kuhlmann-Wilsdorf D. and Makel D.D. (1994). The Dynamic Analysis of Stick-Slip Motion.Wear,173, 1–12.

    Google Scholar 

  60. Gekker F.R. and Khairaliev S.I. (1995). On Self-Excited Friction Vibrations in Brakes.ASME Design Engineering Technical Conferences,3, 1229–1231.

    Google Scholar 

  61. Gibert C. (2001).Analyse Modale Expérimentale Non-Linéaire. Ecole Centrale de Lyon: Student Press, Thèse de Doctorat.

  62. Girardot D. (1997).Stabilité et Bifurcations Dynammiques des Systèmes Discrets Autonomes Régulier et avec Chocs. Ecole Polytechnique: Student Press, Thèse de Doctorat.

  63. Gordon J.T. and Merchant H.C. (1978). An Asymptotic Method for Predicting Amplitudes of Nonlinear Wheel Shimmy.Journal of Aircraft,15, 155–159.

    Google Scholar 

  64. Gutknecht M.H. (1990). The Unsymmetric Lanczos Algorithms and their Relations to Padé Approximation, Continued Fractions, and the qd Algortihm.Proceedings of the Copper Mountain Conference on Iterative Methods.

  65. Guyan R.J. (1965). Reduction of Stiffness and Mass Matrices.AIAA Journal,3(2), 380.

    Google Scholar 

  66. Hale, A.L. and Meirovitch, L. (1982). A General Procedure for Improving Substructures Representation in Dynamic Synthesis.AIAA Journal,84, 269–287.

    MATH  Google Scholar 

  67. Hale A.L. and Meirovitch, L. (1982). A Procedure for Improving Discrete Substructure Representation in Dynamic Synthesis.AIAA Journal,20, 1123–1136.

    Google Scholar 

  68. Hamzeh O.N., Tworzydlo W.W., Chang H.J. and Fryska S.T. (1999). Analysis of Friction-Inducted Instabilites in a Simplified Aircraft Brake.Society of Automotive Engineers.

  69. Hayashi C. (1964).Nonlinear Oscillations in Physical Systems. McGraw-Hill Book Co., New-York.

    MATH  Google Scholar 

  70. Holmes P. and Guckenheimer J. (1986).Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag.

  71. Hou S.N. (1969). Review of Modal Synthesis Techniques and a New Approach.Schock and Vibration Bulletin,40, 25–30.

    Google Scholar 

  72. Hsu L. (1983). Analysis of Critical and Post-Critical Behaviour of Non-Linear Dynamical Systems by the Normal Form Method. Part I: Normalisation Formulae.Journal of Sound and Vibration,89, 169–181.

    MATH  MathSciNet  Google Scholar 

  73. Hsu L. (1983). Analysis of Critical and Post-Critical Behaviour of Non-Linear Dynamical Systems by the Normal Form Method. Part II: Divergence and Flutter.Journal of Sound and Vibration,89, 183–194.

    MATH  MathSciNet  Google Scholar 

  74. Hugues Jones R. (1976). General Rational Approximants in N-variables.J. Approx. Theory,7 (6), 201–233.

    Google Scholar 

  75. Hugues Jones R. and Makinson, G.J. (1974). The Generation of Chisholm Rational Approximants to Power Series in Two Variables.J. Inst. Math. Appl. Approx. Theory,13, 299–310.

    Google Scholar 

  76. Hulten J. (1993). Brake Squeal—A Self-Exciting Mechanism with Constant Friction.Society of Automotive Engineers, paper 932965.

  77. Hurty W.C. (1965). Dynamic Analysis of Structural Systems Using Component Modes.AIAA Journal,3, 678–685.

    Google Scholar 

  78. Hwang J.L. and Shiau T.N. (1991). An Application of the Generalized Polynomial Expansion Method to Nonlinear Rotor Bearing Systems.Journal of Vibration and Acoustics,113, 299–308.

    Google Scholar 

  79. Ibrahim R.A. (1994). Friction-Induced Vibration, Chatter, Squeal, and Chaos. Part 1: Mechanics of Contact and Friction.ASME Design Engineering Technical Conferences,7, 209–226.

    Google Scholar 

  80. Ibrahim R.A. (1994). Friction-Induced Vibration, Chatter, Squeal, and Chaos, Part 2: Dynamics and Modeling.ASME Design Engineering Technical Conferences,7, 226–269.

    Google Scholar 

  81. Imbert J.F. (1991).Analyse des Structures par Elements Finis. Cepadues, In french.

  82. Ioss G. (1988). Local Techniques in Bifurcation Theory and Nonlinear Dynamics.Chaotic Motions in Nonlinear Dynamical Systems, Springer,1, 137–193.

    Google Scholar 

  83. Ioss, G. and Adelmeyer M. (1992).Topics in Bifurcation Theory and Applications. Advanced series in nonlinear dynamics vol3—World Scientific Singapore-New-Jersey-London-Hong Kong.

    Google Scholar 

  84. Ioss G. and Vanderbauwhede A. (1992).Center Manifold Theory in Infinite Dimensions: Dynamics reported 1 new series-Springer Verlag.

  85. Iwan W.D. (1969). Application of an Equivalent Nonlinear System Approach to Dissipative Dynamical Systems.Journal of Applied Mechanics,1, 412–416.

    Google Scholar 

  86. Iwan W.D. (1969). On Defining Equivalent Systems for Certain Ordinary Non-Linear Differential Equations.International Journal of Non-linear Mechanics,4, 325–334.

    MATH  Google Scholar 

  87. Iwan W.D. (1973). A Generalization of the Concept of Equivalent Linearization.International Journal of Non-linear Mechanics,8, 279–287.

    MathSciNet  Google Scholar 

  88. Iwan W.D. and Krousgrill C.M. (1983). Equivalent Linearization for Continuous Dynamical Systems.Journal of Applied Mechanics,50, 415–420.

    MATH  MathSciNet  Google Scholar 

  89. Iwan W.D. and Yang I.M. (1972). Application of Statistical Linearization Techniques to Nonlinear Multidegree-of-Freedom Systems.Journal of Applied Mechanics,50, 545–550.

    Google Scholar 

  90. Iwan W.D. and Mills B. (1993). Vibrations Induced by Dry Friction.Proc. Instn. Mech. Engrs,132, 847–866.

    Google Scholar 

  91. Jean A.N. and Nelson H.D. (1990). Periodic Response Investigation of Large Order Nonlinear Rotordynamic Systems Using Collocation.Journal of Sound and Vibration,143(3), 299–308.

    Google Scholar 

  92. Jézéquel L. and Lamarque C.H. (1991). Analysis of Non-Linear Dynamical Systems by the Normal Form Theory.Journal of Sound and Vibration,149, 429–459.

    Google Scholar 

  93. Joseph D.D. and Iooss G. (1980).Elementary Bifurcation and Stability Theory. Berlin: Springer-Verlag.

    MATH  Google Scholar 

  94. Jézéquel L. (1985)Synthèse Modale— Théorie et Extensions. Université Claude-Bernard-Lyon 1: Student Press, Thèse de Doctorat ès-Sciences.

  95. Kanarachos A.E. and Spentzas C.N. (1997). A Galerkin Method for the Steady State Analysis of Harmonically Excited Non-linear Systems.Mechanisms and Machine Theory,27, 661–671.

    Google Scholar 

  96. Kantarovich L.V. and Krylov V.L. (1958).Approximate Methods of Higher Analysis. P. Noordhoff Ltd., Groninger.

    Google Scholar 

  97. Kim Y-B. (1996). Quasi-periodic Response and Stability Analysis for Non-linear Systems: a General Approach.Journal of Sound and Vibration,192(4), 821–833.

    MathSciNet  Google Scholar 

  98. Kim Y-B. (1998). Multiple Harmonic Balance Method for Aperiodic Vibration of a Piecewise-Linear System.Journal of Vibration and Acoustics,120, 181–187.

    Google Scholar 

  99. Knoblock H.W. (1990). Construction of Center Manifolds.ZAMM. Z angew. Math. Mech.,70, 215–233.

    Google Scholar 

  100. Kobayashi M. (1990). Sound and Vibration in Brakes.Japanese Journal of Tribology,35, 561–567.

    Google Scholar 

  101. Krylov N.M. and Bogoliubov N.N. (1947).Introduction to Nonlinear Mechanics. Princeton.

  102. Kusano M., Ishidon H., Matsumurz S. and Washizu S. (1985). Experimental Study on the Reduction of Drum Brake Noise.Society of Automotive Engineers. paper 851465.

  103. Lamarque C.H. (1992).Modélisation et Identification des Systèmes Mécaniques Non Linéaires. Ecole Centrale de Lyon: Student Press, Thèse de Doctorat.

  104. Lamnabhi-Lagarrigue F. (1994).Analyse des Systèmes Non Linéaires. hermes.

  105. Lang A.M. and Newcomb T.P. (1989). An Experimental Investigation into Drum Brake Squeal.I. Mech.E/EAEC Conf., paper C382/051.

  106. Larsson H. and Farhang K. (1997). Investigation of Stick-Slip Phenomenon Using a Two-Disk Friction System Vibration Model.ASME Design Engineering Technical Conferences,1, 1–10.

    Google Scholar 

  107. Lau S.L. and Cheung Y.K. (1981). Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems.Journal of Applied Mechanics,28, 959–964.

    Google Scholar 

  108. Lau S.L., Cheung Y.K. and Wu S.Y. (1982). A Variable Parameter Incrementation Method for Dynamic Instability of Linear and Nonlinear Amplitude Incremental Variational Principle for Nonlinear Vibration of Linear and Nonlinear Elastic Systems.Journal of Applied Mechanics,49, 849–853.

    MATH  Google Scholar 

  109. Lau S.L., Cheung Y.K. and Wu S.Y. (1983). Incremental Harmonic Balance with Multiple Time Scales for Aperiodic Vibrations of Nonlinear Systems.Journal of Applied Mechanics,50, 871–876.

    MATH  MathSciNet  Google Scholar 

  110. Lau S.L. and Zhang W.S. (1992). Non-Linear Vibration of Piecewise-Linear Systems by Incremental Harmonic Balance Method.Journal of Applied Mechanics,59, 153–160.

    MATH  MathSciNet  Google Scholar 

  111. Leung A.Y.T. and Chui S.K. (1995). Non-Linear Vibration of Coupled Duffing Oscillators by an Improved Incremental Harmonoc Balance Method.Journal of Sound and Vibration,181(4), 619–633.

    MathSciNet  Google Scholar 

  112. Liapunov A.M. (1949).Problème Général de la Stabilité du Mouvement. Annals of Mathematical Studies, Princeton University Press, Princeton.

    Google Scholar 

  113. Ling F.H. and Wu X.X. (1987). Fast Galerkin Method and its Application to Determine Periodic Solutions of Nonlinear Oscillators.International Journal of Nonlinear Mechanics,22, 89–98.

    MATH  Google Scholar 

  114. Liu Y.S., Ozbek M.A. and Gordon J.T. (1996). A Nonlinear Model for Aicraft Brake Squeal Analysis. Part I: Model Description and Solution Methodology.ASME Design Engineering Technical Conferences,3, 406–416.

    Google Scholar 

  115. Malkin N.G. (1962).Some Problems of the Theory of Nonlinear Oscillations. OTS Atomic Energy Commission, Washington DC.

    Google Scholar 

  116. Marsden J.E. and McCracken M. (1976).The Hopf Bifurcation and its Applications. New-York: Springer-Verlag.

    MATH  Google Scholar 

  117. Meirovitch L. (1986).Elements of Vibration Analysis. Mac Graw Hill International Editions.

  118. Meirovitch L. (1990).Dynamics and Control of Structures. John Wiley & Sons.

  119. Meirovitch L. and Hale A.L. (1981). On the Substructure Synthesis Method.AIAA Journal,19, 940–947.

    Google Scholar 

  120. Mickens R.E. (1971).An Introduction to Nonlinear Oscillations. Cambridge University Press, Springer-Verlag.

  121. Millner N. (1978). An Analysis of Disc Brake Squeal.SAE,paper 780332.

  122. Millner N. and Parsons B. (1973). Effect of Contact Geometry and Elastic Deformations on the Torque Characteristics of a Drum Brake.Proc. Instn. Mech. Engrs,187, 317–331.

    Google Scholar 

  123. Mills H.R. (1938). Brake SquealInstitution of Automobile Engineers, Research Report 9000b and Research Report 9162B.

  124. Moirot F. (1998).Etude de la Stabilité d'un Equilibre en Présence de Frottement de Coulomb. Application à l'Etude des Freins à Disque. Ecole Polytechnique: Student Press. Thèse de Doctorat.

  125. Moser J. (1973).Stable and Random Motion in Dynamical Systems. Hermann Weyl Lectures, Princeton, New Jersey.

  126. Murray D. (1994). Normal Form Investigations of Dissipative Systems.Mechanics Research Communications,21(3), 231–240.

    MATH  MathSciNet  Google Scholar 

  127. Nack W.C. (1999). Brake Squeal Analysis by Finite Elements and Comparisons to Dyno Results.ASME Design Engineering Technical Conferences, 1–8.

  128. Nakai M. and Yokoi M. (1996). Band Brake Squeal.Journal of Vibration and Acoustics,118, 190–197.

    Google Scholar 

  129. Narayanan S. and Sekar P. (1998). A Frequency Domain Based Numeric-Analytical Method for Non-Linear Dynamical Systems.Journal of Sound and Vibration,211(3), 409–424.

    Google Scholar 

  130. Nataraj C. and Nelson H.D. (1989). A Collocation Method for the Investigation of Periodic Solutions in Nonlinear Sytems.12th Design Technical Conference on Mechanical Vibration and Noise-Diagnostics, vehicle Dynamics and Special Topics, Montréal, Canada,1, 325–330.

    Google Scholar 

  131. Nataraj C. and Nelson H.D. (1989). Periodic Solutions in Rotor Dynamic Systems With Nonlinear Supports: A General Approach.Journal of Vibration and Acoustics,111, 187–193.

    Google Scholar 

  132. Nayfeh, A.H. (1981).Introduction to Perturbation Techniques. John Wiley & Sons, New-York.

    MATH  Google Scholar 

  133. Nayfeh A.H. (1993).Methods of Normal Forms. John Wiley & Sons, New-York.

    Google Scholar 

  134. Nayfeh A.H. and Balachandran B. (1995).Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods, John Wiley & Sons.

  135. Nayfeh A.H. and Mook D.T. (1995).Nonlinear Oscillations, John Wiley & Sons.

  136. North M.R. (1972). A Mechanism of Disk Brake Squeal.14th FISITA Congress,1/9.

  137. Oden J.T. and Martins J.A.C. (1985). Models and Computational Methods for Dynamic Friction Phenomena.Computer Methods in Applied Mechanics and Engineering,52, 527–634.

    MATH  MathSciNet  Google Scholar 

  138. Ostachowicz W. (1989). The Harmonic Balance Method for Determining the Vibration Parameters in Damped Dynamic Systems.Journal of Sound and Vibration,131(3), 465–473.

    Google Scholar 

  139. Ozbek M.A. (1997). A Pertubation Analysis of Nonlinear Squeal Vibrations in Aircraft Braking Systems. InASME Design Engineering Technical Conferences,3, 1–10.

  140. Padé H. (1892). Sur la Représentation Approchée d'une Fonction par des Fractions Rationnelles.Ann. Sci. Ecole Normale Supérieure, Oeuvres 4. Berlin,9, 1–93.

    Google Scholar 

  141. Pellicano F. and Mastroddi F. (1997). Applicability Conditions of a Non-linear Superpostion Technique.Journal of Sound and Vibration,200(1), 3–14.

    Google Scholar 

  142. Pierre C., Dowell E.H. (1985). A Study of Dynamic Instability of Plates by an Extended Incremental Harmonic Balance Method.Journal of Applied Mechanics,52, 993–997.

    Google Scholar 

  143. Pierre C., Ferri A.A. and Dowell E.H. (1985). Multi-Harmonic Analysis of Dry friction Damped Systems Using an Incremental Harmonic Balance Method.Journal of Applied Mechanics,56, 958–964.

    Google Scholar 

  144. Poincaré H. (1880).Mémoire sur les Courbes Définies par les Equations Différentielles i-VI, Oeuvres I. Gauthier-Villar, Paris.

    Google Scholar 

  145. Poincaré H. (1899).Les Méthodes Nouvelles de la Mécanique Céleste. Librairie A. Blanchard, Paris.

    MATH  Google Scholar 

  146. Poincaré H. (1979).Oeuvres 1. Thèse, Paris, année 1928.

  147. Qinsheng B. and Yu P. (1999). Double Hopf Bifurcation and Chaos of a Nonlinear Vibration System.Nonlinear Dynamics,19, 313–332.

    MATH  MathSciNet  Google Scholar 

  148. Rabinowicz E. (1995).Friction and Wear of Materials. Wiley & Sons.

  149. Raghothama A. and Narayanan S. (1999). Non-Linear Dynamics of a Two-Dimensional Airfoil by Incremental Harmonic Balance Method.Journal of Sound and Vibration,226(3), 493–517.

    Google Scholar 

  150. Remington P.J. (1976). Wheel Rail/Noise, Part I: Characterization of the Wheel/Rail Dynamic System.Journal of Sound and Vibration,46(3), 359–379.

    Google Scholar 

  151. Ren Y. and Beards C.F. (1994). A New Receptance-Based Perturbative Multi-Harmonic Balance Method for the Calculation of the Steady State Response of Non-Linear Systems.Journal of Sound and Vibration,172, 593–604.

    MATH  Google Scholar 

  152. Rocard Y. (1971).Dynamique Générale des Vibrations. Masson. In french.

  153. Rosenberg R.M. (1962). The Normal Modes of Nonlinear n-Degree-of-Freedom Systems.ASME Journal of Applied Mechanics,18, 7–14.

    Google Scholar 

  154. Rosenberg R.M. (1966). On Non-Linear Vibrations of Systems with Many Degree of Freedom.Advances in Applied Mechanics,9, 155–242.

    Google Scholar 

  155. Roy R.V. and Spanos P.D. (1991). Padé Type Approach to Nonlinear Random Vibration Analysis.Engineering probabilistic Mechanics,1, 119–128.

    Google Scholar 

  156. Rudowski J. (1982). Limit Cycles in Self-Excited Multi-Degree-of-Freedom Systems.Journal of Sound and Vibration,81(1), 33–49.

    MATH  MathSciNet  Google Scholar 

  157. Saito S. (1985). Calculation of Nonlinear Unbalance Response of Horizontal Jeffcott Rotors Supported by Ball Bearings with Radial Clearances.Journal of Vibration, Acoustics, Stress and Reliability in Design,107(4), 416–420.

    Google Scholar 

  158. Samoilenko A.M. and Ronto N.I. (1979). Numerical Analytic Methods of Investigating Periodic Solutions.Mir Publishers, Moscou,1.

  159. Sanders J.A. and Verhulst F. (1985).Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences, Springer-Verlag.

  160. Setio S. (1991).Comportement des Structures Mécaniques Non-Linéaires Soumises à des Excitations Stationnaires. Ecole Centrale de Lyon: Student Press, Thèse de Doctorat.

  161. Setio S., Setio H.D. and Jézéquel L. (1990). A Method of Non-Linear Modal Identification From Frequency Response Tests.8th International Modal Analysis Congress. Orlando. Florida,1, 334–340.

    Google Scholar 

  162. Setio S., Setio H.D. and Jézéquel L. (1992). A Method of Non-Linear Modal Identification From Frequency Response Tests.Journal of Sound and Vibration,158(3), 497–515.

    MATH  Google Scholar 

  163. Shaw S.W. and Pierre C. (1991). Non-Linear Normal Modes and Invariant Manifolds.Journal of Sound and Vibration,150(1), 170–173.

    MathSciNet  Google Scholar 

  164. Shaw S.W. and Pierre C. (1993). Normal Modes for Non-Linear Vibratory Systems.Journal of Sound and Vibration,164(1), 85–124.

    MATH  MathSciNet  Google Scholar 

  165. Shaw S.W. and Pierre C. (1994). Normal Modes of Vibration for Non-Linear Continuous Systems.Journal of Sound and Vibration,150(1), 319–347.

    Google Scholar 

  166. Sinclair D. and Manville N.J. (1955). Frictional Vibrations.Journal of Applied Mechanics, 207–213.

  167. Sinou J-J. (2003).Synthèse Non-linéaire des Systèmes Vibrants: Application aux Systèmes de Freinage. Ecole Centrale de Lyon: Student Press, Thèse de Doctorat.

  168. Sinou J-J., Thouverez F., Dereure O. and Mazet G.B. (2003). Non-linear Dynamics of a Complex Aircraft Brake System—Experimental and Theoretical Approaches.ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 19th Biennal Conference on Mechanical Vibration and Noise,1, 1–10, Chicago, Illinois, September 2–6.

    Google Scholar 

  169. Sinou J-J., Thouverez F. and Jézéquel L. (2002). Application of Multivariable Approximants to Stability of Dynamical Systems with Polynomial Non-Linearities.5th EUROMECH Conferences on Nonlinear Oscillations,1, 44, Moscow, Russia, August 9–23.

    Google Scholar 

  170. Sinou J-J., Thouverez F. and Jézéquel L. (2002). Center Manifold Approach and Multivariable Approximants Applied to Non-Linear Stability Analysis.International Journal of Non-Linear Mechanics,38(9), 1421–1442.

    Google Scholar 

  171. Sinou J-J., Thouverez F. and Jézéquel L. (2002). Stability Analysis of Nonlinear Dynamical Systems Based on the Normal Form theory.5th EUROMECH Conferences on Nonlinear Oscillations, Moscow, Russia, August 9–23,1, 9.

    Google Scholar 

  172. Sinou J-J., Thouverez F. and Jézéquel L. (2003). Analysis of Friction and Instability by the Center Manifold theory for an Non-Linear Sprag-Slip Model.Journal of Sound and Vibration,265(3), 527–559.

    Google Scholar 

  173. Sinou J-J., Thouverez F., Jézéquel L. Dynamique Non-linéaire d'un Ensemble Rotor/Stator Comportant des Mécanismes Non-linéaires avec Jeu.Proceedings du 6ème Colloque National en Calcul des Structures, May 20–23, Giens,1, 1–10 (2003).

    Google Scholar 

  174. Sinou J-J., Thouverez F. and Jézéquel L. (2003). Extension of the Center Manifold Approach, Using the Rational Fractional Approximants, Applied to Non-linear Stability Analysis.Journal of Nonlinear Dynamics,33, 267–282.

    MATH  Google Scholar 

  175. Sinou J-J., Thouverez F and Jézéquel L. (2003). Non-Linear Stability Analysis Based on the Center Manifold Approach, the Padé Approximants and the Alternate/Frequency Time Domain Method.8th International Conference on Recent Advances in Structural Dynamics,1, 1–12, Southampton, United Kingdom, July 14–16.

    Google Scholar 

  176. Sinou J-J., Thouverez F. and Jézéquel L. (2004). Application of a Nonlinear Modal Instability Approach to Brake Systems.Journal of Vibration and Acoustics,126(1), 101–107.

    Google Scholar 

  177. Spanos P-T.D. and Iwan W.D. (1978). On The Existence and Uniqueness of Solutions Generated by Equivalent Linearization.International Journal of Non-linear Mechanics,13, 71–78.

    MATH  MathSciNet  Google Scholar 

  178. Spanos P-T.D. and Iwan W.D. (1979). Harmonic Analysis of Dynamic Systems With Nonsymmetric Nonlinearities.Journal of Dynamic Systems, Measurement, and Control,101, 31–36.

    MATH  Google Scholar 

  179. Spurr R.T. (1961). A Theory of Brake Squeal.Proc. Auto. Div. Instn. Mech. Engrs,1, 33–40.

    Google Scholar 

  180. Stewart G.W., Sun J.G. (1990). Computer Science and Scientific Computing.Matrix Perturbation Theory, Academic Press.

  181. Stieltjes T.G. (1889). Sur la Réduction en Fraction Continue d'une Série Procédant suivant les Puissances Descendantes d'une Variables.Annales Faculté des Sciences de Toulouse, France,3, 1–17.

    MathSciNet  Google Scholar 

  182. Stieltjes T.G. (1894). Recherches sur les Fractions Continues.Annales Faculté des Sciences de Toulouse, France,8, 1–122.

    MathSciNet  Google Scholar 

  183. Stoker J.J. (1950).Nonlinear Vibrations in Mechanical and Electrical Systems. Int. Publ. Inc., New-york.

    MATH  Google Scholar 

  184. Stokes A. (1972). On the Approximation of Non-linear Oscillations.Journal of Differential Equations,12, 535–558.

    MATH  MathSciNet  Google Scholar 

  185. Sundararajan P. and Noah S.T. (1997). Dynamics of Forced Nonlinear Systems UsingShooting/Arc-length Continuation Method—Application to Rotor Systems.Journal of Vibration and Acousitcs,119, 9–20.

    Google Scholar 

  186. Szemplinska-Stupnicka W. (1979). The Modified Single Mode Method in the Investigation of the Resonant Vibration of Non-Linear Systems.Journal of Sound and Vibration,104(2), 475–489.

    MathSciNet  Google Scholar 

  187. Szemplinska-Stupnicka W. (1983). Non-Linear Normal Modes and the Generalized Ritz Method in the Problems in Vibrations of Non-Linear Elastic Continuous Systems.International Journal of Non-linear Mechanics,18, p149–165.

    MATH  MathSciNet  Google Scholar 

  188. Szemplinska-Stupnicka W. (1990). The Behaviour of Nonlinear Vibrating Systems: Advanced Concepts and Application to Single-Degree-of-Freedom Systems.Kluwer Academic Publishers, Dordrecht,1, 330.

    Google Scholar 

  189. Szemplinska-Stupnicka W. (1990). The Behaviour of Nonlinear Vibrating Systems: Fundamental Concepts and Methods.Kluwer Academic Publishers, Dordrecht,1, 253.

    MathSciNet  Google Scholar 

  190. Tolstoi D.M. (1967). Significance of the Normal Degree of Freedom and Natural Normal Vibrations in Contact Friction.Wear,10, 199–213.

    Google Scholar 

  191. Tondl A. (1963). On the Internal Resonance of a Nonlinear System with two Degrees of Freedom.Nonlinear Vibration Problems,5, 207–222.

    Google Scholar 

  192. Tondl A. (1970). Domains of Attraction for Nonlinear Systems.National Research Inst. for machine Design. bechovice, Monographs and Memoranda,8.

  193. Tondl A. (1975). Quenching of Self-excited Vibrations: Equilibrium Aspects.Journal of Sound and Vibration,42, 251–260.

    Google Scholar 

  194. Tondl A. (1975). Quenching of Self-excited Vibrations: One and Two-frequency Vibrations.Journal of Sound and Vibration,42, 261–271.

    Google Scholar 

  195. Travis M.H. (1995). Nonlinear Transient Analysis of Aircraft Landing Gear Brake Whirl and Squeal.ASME Design Engineering Technical Conferences,3, 1209–1216.

    Google Scholar 

  196. Urabe M. (1965). Galerkin's Procedure for Nonlinear Periodic Systems.Archive Rational Mech. Anal.,20, 120–152.

    MATH  MathSciNet  Google Scholar 

  197. Urabe M., Reiter A. Numerical Computation of Nonlinear Forced Oscillations by Galerkin's procedure.Journal of Math. Anal. Appl.,14, 107–140 (1966).

    MathSciNet  Google Scholar 

  198. Vakakis A.F., Manevitch L.I., Mikhlin Y.V. Pilipchuck V.N. and Zevin A.A. (1996).Normal Modes and Localization in Nonlinear Systems, John Wiley & Sons.

  199. Vola D., Raous M. and Martins A.C. (1999). Friction and Instability of Steady Sliping:Squeal of Rubber/Glass Contact.International Journal for Numerical Methods in Engineering,1, 1699–1720.

    MathSciNet  Google Scholar 

  200. Wang Z. and Hu H. (1999). Robust Stability Test for Dynamic Systems with Short Delays by Using Padé Approximation.Nonlinear Dynamics,18, 275–287.

    MATH  Google Scholar 

  201. Wazwa A.M. (1999). Analytical Approximations and Padé Approximants for Volterra's Population Model.Applied Mathematics and Computation,100, 13–25.

    MathSciNet  Google Scholar 

  202. Xie G. and Lou J.Y.K. (1996). Alternating Frequency/Coefficient (AFC) Technique in the Trigonometric Collocation Method.International Journal of Non-Linear Mechanics,31 (4), 531–545.

    MATH  MathSciNet  Google Scholar 

  203. Yu P. (1998). Computation of Normal Forms via a Perturbation Technique.Journal of Sound and Vibration,211, 19–38.

    MathSciNet  Google Scholar 

  204. Yu P. and Yuan Y. (2001). The Simplest Normal Forms Associated with a Triple Zero Eigenvalue of Indices one and two.Nonlinear Analysis,47, 1105–1116.

    MATH  MathSciNet  Google Scholar 

  205. Yuan Y. (1995). A Study of the Effects of Negative Friction-Speed Slope on Brake Squeal.ASME Design Engineering Technical Conferences,3, 1153–1162.

    Google Scholar 

  206. Zhang W. and Huseyin K. (1999). Computation of the Coefficients Associated with the Normal Form of a Rsonant Five-Dimensional System.Mathematical and Computer Modelling,30, 213–228.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Sinou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinou, J.J., Thouverez, F. & Jézéquel, L. Methods to reduce non-linear mechanical systems for instability computation. ARCO 11, 257–344 (2004). https://doi.org/10.1007/BF02736228

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736228

Keywords

Navigation